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Preface

Y
oung children playing in the schoolyard may fantasize about their
future careers, often across stunningly disparate ambitions. For
example, very early in his schooling my younger brother strug-
gled between the career choices of being either a pumpkin or an

air conditioner.
But young children, or even young adults, never include statistician or

psychometrician among the options they consider. Instead, a few people
somewhere along the path of education discover these fields, and often
they are surprised by their unanticipated interest.

I first became interested in statistics and measurement as a young,
first-year high school teacher taking a required master’s degree course in
research methods. I was so exhausted from my new job that one night I
fell asleep in class.

But that class and its content eventually captivated my interest, and
even my passion, once I realized that methodology is not about math.
Instead, good social science research is primarily about thinking, about
reflection, and about judgment.

Moreover, studying social science phenomena is just plain interesting,
because people are so interesting. Of course, this does not mean that
studying people is easy. On the contrary, because people are so different
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from each other, studying people is really quite challenging (Berliner,
2002).

I hope that you, too, will find yourself captivated at least a bit by the
methodological challenges inherent in studying people. In any case,
through the years I have learned that students expect their professors to be
passionate about what they teach, even when the students do not fully
share these interests.

I hope that you will sense some of my excitement in this book. I also
hope that this book, under a best-case scenario, will leave you with two
fundamental reactions:

1. “This is the clearest book I have ever read.”
2. “This book made me think, but also maybe even made me a better

thinker.”

The book does have several features that together I believe make
it unique, in addition to what I hope is its clarity and thought-
provocativeness. First, the book emphasizes the General Linear Model
concepts, which involve understanding how different statistical methods
are related to each other. Second, the book emphasizes effect sizes and
confidence intervals; these are old statistical ideas that are now in the fore-
front of contemporary social science. Third, the book includes many con-
crete hypothetical datasets, as well as the encouragement to use computer
software (e.g., the statistical package SPSS, and the spreadsheet program
Excel) to confirm and further explore statistical dynamics. For conve-
nience, some datasets used in the book have been posted on the web at the
URL http://www.coe.tamu.edu/~bthompson/datasets.htm. Also posted are
various other datasets. These can be quite useful in exploring statistical
dynamics, or to develop mastery of software via practice.

This book has not been written as a sterile, formal, impenetrable trea-
tise. The book teaches formulas, not as an end in themselves, but as vehi-
cles to facilitate understanding of key concepts. Rote memory of legions of
formulas is less relevant in an environment populated by modern hard-
ware and software. Moreover, the book is written in my voice, and I speak
directly to you. My hope is that you will find this approach engaging and
stimulating.

In closing, I would be remiss if I failed to thank all the students over
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so many years who have taught me so much about statistics, as well as
clarity of thinking and articulation, among other things. Teaching is the
ultimate learning experience. I learn more every time I revisit each topic in
a lecture or class discussion, no matter how mundane the topic or how
well traveled the road.

I appreciate the helpful suggestions from reviewers selected by the
Publisher and unknown to me at the time of their reviews: Robin K.
Henson, Department of Technology and Cognition, University of North
Texas; Jeff Kromrey, Department of Educational Measurement and
Research, University of South Florida; David Morse, Department of
Psychology, Mississippi State University; Victoria Rodlin, Statistical Con-
sultant (former faculty, Department of Psychology, California State Uni-
versity, Fullerton); Frank Schmidt, College of Business, University of Iowa;
Paul R. Swank, Department of Pediatrics, University of Texas Health
Science Center at Houston; Bruce Thyer, College of Social Work, Florida
State University; Ken Wallston, School of Nursing, Vanderbilt University;
David Weakliem, Department of Sociology, University of Connecticut,
Storrs. Additionally, several colleagues (Laurie Goforth, Bonnie Haecker,
Oi-Man Kwok, and Janet Rice) provided insightful comments on sections
of the draft manuscript. I have not followed this counsel in all cases, and
so necessarily must remain responsible for the work in its final form.

I also thank my Publisher, C. Deborah Laughton, with whom I have
now worked for more than 10 years, for her support and encouragement.
I quite vividly remember our first dinner in New Orleans in April 1994. I
will also never forget some of our degustation dinners since, including a
near “death-by-chef” experience in Manhattan. One has to love anybody
who drives a car with personalized license plates admonishing,
“BE SILLY.” I am guardedly optimistic that someday she will confess
what the “C” stands for.

BRUCE THOMPSON

Texas A&M University and
Baylor College of Medicine (Houston)
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1

Introductory Terms
and Concepts

M
ost of us at some point have been asked to tell others the
essence of who we are or to describe a friend to a third party;
or friends may have described to us other people whom we
had not yet met. For example, you may have been offered the

opportunity for a blind date. Most of us develop the survival skills to ask a
lot of questions when these opportunities arise!

The problem is that it is difficult to summarize a person by only a few
characteristics. Some people may be easier to represent than others (e.g.,
“She is just so nice!”). But we probably perceive most people to be multi-
dimensional, and so several different characterizations may be necessary
to even begin to represent complex personalities (e.g., “He is intense, bril-
liant, and incredibly funny”).

The kinds of characterizations of interest depend upon both who we
are, and our purposes. We will ask somewhat different questions if we are
deciding whom to hire for a job, from whom to receive cooking advice, or
whom we should date.

Similar dynamics arise when we are trying to understand data or to
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characterize data to others. Maybe some data can be described by a single
characterization (e.g., “the mean score was 102.5”). But more often than
not several different kinds of characterizations are needed (e.g., “the data
ranged from 83.0 to 116.5, and the most frequent score was 99.0”).

And as in describing people, which characterizations are relevant
when describing data depend largely upon our purposes. Sometimes the
mean is essential; sometimes the mean is completely irrelevant.

Finally, our personal values affect which and how many characteriza-
tions may be needed to describe a potential blind date (e.g., one person
may be most concerned about the blind date’s wealth, but another may be
most interested in the candidate’s sexiness). Similarly, in statistics experts
reach different decisions about how best to understand or represent data,
even when their research has the same purposes. Researcher values and
interests inherently affect how we characterize data.

In other words, statistics is not about always doing the same data
analysis no matter what is the research purpose or situation and no matter
who is the researcher. Nor is statistics about black and white or univer-
sally-right or universally-wrong analytic decisions. Instead, statistics is
about being reasonable and reflective.

Statistics is about thinking. In the words of Huberty and Morris
(1988), “As in all statistical inference, subjective judgment cannot be
avoided. Neither can reasonableness!” (p. 573).

The good news for mathphobic students is that statistics and research
are not really about math and computation. The bad news, however, is
that statistics and research are about thinking. And thinking can be much
more challenging (but also much more exciting) than rote calculation or
rote practice.

Statistics is about both understanding and communicating the essence
of our data. If all studies were conducted with only three or seven or nine
people, perhaps no statistics would ever be necessary. We could simply
look at the data and understand that the intervention group receiving the
new medication did better than the control group receiving placebo sugar
pills.

But when we conduct studies with dozens, or hundreds, or tens of
thousands of participants, even the most brilliant researcher cannot simply
stare at the data and see all (or perhaps any) of the themes within the data.
With datasets of realistic size, we require statistics to help us understand
the story underlying our data, or “to let the data speak.” Statistics were
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invented by people, for people, to help us characterize the relevant features
of data in a given context for a given purpose.

And even if a researcher was so astoundingly brilliant as to be able
simply to examine huge datasets and understand all the underlying
themes, statistics would still be needed to communicate the results to oth-
ers. For example, even presuming that some researcher could look at the
achievement test scores of 83,000 elementary school students and under-
stand their performance, most newspapers and journals would balk at
reprinting all 83,000 scores to convey the results to their readers. Statis-
tics, then, are also needed to facilitate the economical communication of
the most situationally-relevant characterizations of data.

��� Definitions of Some Basic Terms

Variables versus Constants

Research is about variables and, at least sometimes, constants. A variable
consists of scores that in a given situation fall into at least two mutually
exclusive categories. For example, if you have data on the gender of your
classmates, as long as at least two people differ in their gender, your data
constitute a variable.

If your class consists of 1 male and 16 females, the data constitute a
variable. If the class consists of 8 males and 9 females, the data constitute
a variable. If the class consists of 16 males and 1 female, the gender data
constitute a variable.

The number of variable categories is also irrelevant in determining
whether a variable is present, as long as there are at least two categories.
For example, if your class consists of 5 males, 11 females, and 1 person
who has split XY chromosomes, you still have a variable.

Of course, it is always possible (and sometimes desirable) to collect
data consisting of a single category. A constant consists of scores that in a
given situation all fall within a single category. For example, if all the stu-
dents in a class are females, the gender data in that class on this occasion
constitute a constant. Obviously, sometimes data that are constants in one
situation (Professor Cook’s class) are variables in another situation (Pro-
fessor Kemp’s class).

1. Introductory Terms and Concepts 3



In some situations we purposely constrain scores on what could be
variables to be constants instead. We do so to control for possible extrane-
ous influences, or for other reasons. For example, if we are conducting
studies on metabolizing huge quantities of alcohol, we may limit the study
to men because we believe that men and women metabolize alcohol differ-
ently. We don’t have to worry about these differences if we limit our focus
to men, and examine dynamics in women in a subsequent study, or let
other researchers examine alcohol phenomena involving women. Or, we
might limit the study to only men, knowing that some female study partic-
ipants might be pregnant, and we do not want to risk damaging any
babies of mothers who may not realize they are pregnant by having them
drink large quantities of alcohol during our study.

No statistics are needed either to understand or to communicate a
constant. It is easy to both understand and communicate that “all the stu-
dents were females.”

But statistics are often needed to understand data collected on vari-
ables, even if we collect data only on a single variable. Univariate statistics
are statistics that can be computed to characterize data on a single vari-
able, either one variable at a time in a study with multiple variables, or
when data have been collected only on a single variable.

By the way, now is as good a time as any to let you in on a secret (that
actually is widely known, and thus not really secret): The language of sta-
tistics is intentionally designed to confuse the graduate students (and
everyone else). This mischievousness takes various forms.

First, some terms have different meanings in different contexts. For
example, univariate statistics can be defined as “statistics that can be com-
puted to characterize data from a single variable,” but in another context
(which we will encounter momentarily) the same term has a different
meaning.

Second, we use multiple synonymous names for the same terms. This
second feature of statistical terminology is not unlike naming all seven
sons in a family “George,” or the Bob Newhart television show on which
one of three brothers regularly made the introduction, “This is my brother
Darrell, and this is my other brother Darrell.”

Of course, at the annual summer statistical convention (called a
coven), which statistics professors regularly attend to make our language
even more confusing, an important agreement was reached long, long ago.
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It is not reasonable to confuse the graduate students on unimportant
terms. Thus, we have more synonymous terms for the most important
concepts, and consequently the importance of a concept can be intuited by
counting the number of recognized synonymous terms for the concept.

The implication is that you, unfortunately, must become facile with all
the synonymous terms for a concept. You never know which terminology
you will encounter in published research that reflects merely the arbitrary
stylistic preferences of given scholars. So you must master all the relevant
synonyms, even though the failure of statisticians to agree on uniform ter-
minology is frustrating for all of us.

We may need and use statistics when we have only a single variable
(e.g., to describe the spreadoutness of the scores on the midterm test or to
identify the most frequently scored score on the midterm test). But when
we conduct research we always have at least two variables.

Research is always about the business of identifying relationships that
replicate under stated conditions. We never conduct scholarly inquiry
investigating only a single variable. For example, we never study only
depression. We may study how diet seems to affect depression, or how
exercise seems related to self-concept. But we never study only depression,
or only self-concept.

Dependent versus Independent Variables

When we conduct research, usually there is one variable from among all
the variables in which we are most interested. This variable is called the
dependent variable (or, synonymously, the “criterion,” “outcome,” or
“response” variable). Clearly this is an important variable, else why would
this variable have so many names?

Dependent variables may be caused by or correlated with other vari-
ables. A variable of the second sort is an independent variable (also called
a “predictor” variable).

Within the researcher’s theory of causation, dependent variables
always occur after or at the same time as independent variables. Outcomes
cannot logically flow from subsequent events that occur after the out-
come.

However, the dependent variable is the first variable selected by the
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researcher. The researcher may declare, “I care about math achievement.”
And then the researcher selects what is believed to be the most reasonable
independent variable. The one exception to this generalization is in
applied program evaluation, when we evaluate existing programs and then
conceptualize various possible program effects, including effects that are
either intended or unintended.

In scientific inquiry, we do not select independent variables, and then
wander around checking for all the various things that these independent
variables might or might not impact. This is not by any means meant to
say that important things can only be discovered through formal scientific
methods.

For example, Fleming discovered penicillin when some mold appar-
ently drifted through an open lab window one night and landed on a petri
dish, thereby killing some bacteria that he was investigating. Viagra was
initially investigated as a heart medication, but male patients began
reporting unexpected side effects. These initial discoveries were serendipi-
tous, and not scientific, but nevertheless were important.

But we usually adopt as a premise the view that new discoveries will
be most likely when inquiry is more systematic. We select the outcome we
care about, and most want to control or predict, and only then do we
identify potential causes or predictors that seem most promising, given
contemporary knowledge.

Incidental Variables

Of course, in most studies many incidental variables are present, although
not of primary interest. Some of these data may be recorded and reported
for descriptive purposes, to characterize the makeup of a sample (e.g., eth-
nic representation or age). Other incidental variables may be of no interest
whatsoever, and may not even be recorded.

For example, a researcher may investigate as an independent variable
the effects of two methods of teaching statistics to doctoral students. One
method may involve rote memorization and the use of formulas; the other
method may be insight-focused and Socratic. Final exam scores may con-
stitute the dependent variable.

In any study of this sort, there would be a huge number of incidental

6 FOUNDATIONS OF BEHAVIORAL STATISTICS



variables (e.g., length of right feet, soda preferences, political party affilia-
tions, Zodiac signs) that occur but are of no theoretical interest whatso-
ever, and therefore are usually not even recorded.

Univariate versus Multivariate Analyses

Although formal inquiry always involves at least two variables (at least
one dependent variable, and at least one independent variable), it is usual
that a given study will involve more than two variables. Because most
researchers believe that most outcomes are multiply caused (e.g., heart
health is a function not only of genetics, but also of diet and exercise),
most studies involve several independent variables.

By the same token, most independent variables have multiple effects.
For example, an effective reading intervention will impact the reading
achievement scores of sixth graders, but also may well impact the self-
concepts of these students. Fortunately, just as studies may involve more
than one independent variable, studies may also involve more than one de-
pendent variable.

When a study involves two or more independent variables, but only
one outcome variable, researchers use statistical analyses suitable for
exploring or characterizing relationships among the variables. The class of
statistical analyses suitable for addressing these dynamics is called
univariate statistics, which invokes the second, alternative definition of
this term: “methods suitable for exploring relationships between one de-
pendent variable and one or more independent variables.” Univariate
analyses have names such as “analysis of variance” or “multiple regres-
sion,” and are the sole focus of this book.

When a study involves two or more dependent variables, researchers
may conduct a series of univariate analyses of their data. For example, if a
study involves five dependent variables, the researcher might conduct five
multiple regression analyses, each involving a given outcome variable in
turn.

Alternatively, when a study involves two or more dependent variables,
researchers may conduct a single analysis that simultaneously considers all
the variables in the dataset, and all their influences and interactions with
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each other. This alternative to univariate statistics invokes multivariate
statistics.

Thompson (2000a) emphasized that “univariate and multivariate
analyses of the same data [emphasis added] can yield results that differ
night-and-day [emphasis added] . . . and the multivariate picture in such
cases is the accurate portrayal” (p. 286). However, multivariate statistics
are beyond the scope of the present treatment.

Given that (a) researchers quite often conduct studies involving two or
more criterion variables, and (b) multivariate analyses provide accurate
insights into these data, why must we learn univariate statistics? There are
two reasons. First, sometimes researchers do conduct reasonable studies
with only one dependent variable. Second, understanding univariate statis-
tics is a necessary precondition for understanding multivariate statistics.
Indeed, mastery of the content of this book will make learning multi-
variate statistics relatively easy. Learning this content actually will be
harder than learning the multivariate extensions of these concepts.

Mastery of the concepts of this book will give you the equivalent
empowerment that the ruby slippers gave Dorothy in The Wizard of Oz.
You will have the power to go to Kansas (or not) whenever you wish (or
not wish). Unlike the kind Witch of the North, however, I am telling you
about your empowerment at the beginning, rather than withholding this
knowledge so that the information can be revealed in a surprise ending. (I
have always wondered why Dorothy didn’t deck the kind witch at the end
of the movie, once the witch revealed to Dorothy the power she had pos-
sessed all along; Dorothy might have avoided some painful and difficult
situations if the kind witch had not been so intellectually withholding.)

Symbols

When we are presenting statistical characterizations of our data, we often
use Roman or Greek letters to represent the characterization being
reported (e.g., M, SD, r, σ, β). This is particularly useful when we are pre-
senting formulas, as in statistics textbooks. For example, we convention-
ally use M (or X) as the symbol for the mean (i.e., arithmetic average) of
the data for a given variable.

We also often use Roman letters (e.g., Y, X, A, B) to represent vari-
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ables. Because independent variables tend to first occur chronologically,
and dependent variables occur last, to honor this sequence we typically use
letters from near the end of the alphabet to represent outcomes, and letters
from nearer the beginning of the alphabet to represent predictor or inde-
pendent variables. For example, a researcher may declare that Y represents
degree of coronary occlusion, X1 represents amount of exercise, and X2

represents daily caloric intake. Or a researcher might investigate the effects
of gender (A) and smoking (B) on longevity (Y).

The symbols for statistical characterizations and for variables can also
be combined. For example, once Y has been declared the symbol repre-
senting the variable longevity, MY is used to represent the mean longevity.

Moderator versus Mediator Variables

In some studies we may also study the effects of a subset of independent
variables called moderator variables. In the words of Baron and Kenny
(1986), “a moderator is a . . . variable that affects the direction and/or
strength of the relation between an independent or predictor variable and
a dependent or criterion variable” (p. 1174).

Some variables may have causal impacts within some groups, but not
others, or may have differential impacts across various subgroups. For
example, taking a daily low dose of aspirin reduces the risk of stroke or
infarct. But apparently about 20% of adults are “aspirin resistant,” and
for these patients the independent variable, aspirin dosage, has little or no
effect on the outcome, infarct incidence.

As another example, Zeidner (1987) investigated the power of a scho-
lastic aptitude test to predict future grade point averages. He found that
predictive power varied across various age groups. In this example, GPA
was the dependent variable, aptitude was the independent variable, and
age was the moderator variable.

Moderator effects can be challenging to interpret. Simpson’s Paradox
(Simpson, 1951) emphasizes that relationships between two variables may
not only disappear when a moderator is considered, but also may even
reverse direction! Consider the following hypothetical study in which a
new medication, Thompson’s Elixir, is developed to treat patients with
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very serious coronary heart disease. The results of a randomized clinical
trial (RCT), a 5-year drug efficacy study, are presented below:

Outcome Control Treatment

Live 110 150
Die 121 123
% survive 47.62% 54.95%

The initial interpretation of the results suggests that the new medica-
tion improves 5-year survival, although the elixir is clearly not a panacea
for these very ill patients. However, mindful of recent real research sug-
gesting that a daily aspirin may not be as helpful for women as for men in
preventing heart attacks, perhaps some inquisitive women decide to look
for gender differences in these effects. They might discover that for women
only these are the results:

Outcome Control Treatment

Live 58 31
Die 99 58
% survive 36.94% 34.83%

Apparently, for women considered alone, the elixir appears less effective
than the placebo.

Initially, men might rejoice at this result, having deduced from the two
sets of results (i.e., combined and women only) that Thompson’s Elixir
must work for them. However, their joy is short-lived once they isolate
their results:

Outcome Control Treatment

Live 52 119
Die 22 65
% survive 70.27% 64.67%

In short, for both women and men separately, the new treatment is less
effective than a placebo treatment, even though for both genders com-
bined the elixir appears to have some benefits.
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The paradox that any relationship between variables may be changed,
or even reversed, by introducing a moderator makes clear how vital is the
decision of what variables will be considered in an analysis. In the present
example, we might deem the results for genders combined to be the rele-
vant analysis, and consider using the elixir, notwithstanding the paradoxi-
cal differences within the categories of the moderator variable.

In addition to investigating moderator effects, we also sometimes
study the effects of mediator variables. Whereas moderator variables
inform judgment about when or for whom effects or relationships operate,
mediator variables may help us understand how or why effects or relation-
ships occur.

Independent variables may have some combination of both direct and
indirect effects. Mediator variables are used to explore and quantify the
indirect versus the direct effects of an independent variable upon a depen-
dent variable.

For example, for the largest 50 cities in the United States, there is a
huge relationship between the number of churches and the number of
annual murders. However, if we take into account the mediating influence
of city size, there is virtually no relationship between numbers of churches
and murders. That is, virtually all the “effects” of number of churches on
murders is indirect, via the mediation of city size.

Any observed relationship between churches and murders is spurious.
Taking into account city size, we see that churches do not apparently
explain or predict murders. Nor do more or fewer murders apparently
lead to building more or fewer churches!

As a second example, consider the relationship between fathers’ edu-
cation and oldest child’s subsequent education, mediated by fathers’ socio-
economic status. Fathers’ education may have a mixture of both direct and
indirect effects on the educational attainment of children. More educated
fathers may teach children to value attainment, and may also teach their
children educational content.

But fathers’ education additionally impacts fathers’ socioeconomic
status. And fathers’ socioeconomic status may, in turn, have its own
impacts on the educational attainment of children, because social class
may influence children’s aspirations, expectations, and the knowledge
exchanged by peers in classrooms and other settings.
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Populations versus Samples

Whenever we conduct quantitative or mixed-methods (Tashakkori &
Teddlie, 2002) research, there is the group of people (or lab rats or mon-
keys) about which we wish to generalize, and the group from which we
have data. The group to which we wish to generalize is called the popula-
tion. If we have data only from a subset of the population, our dataset is
called a sample.

If I collect data in a teaching experiment from 20 doctoral students in
a given time period, and these are the only students about whom I care,
then this group constitutes a population. But if I give you my data, and
you wish to use these data to generalize to other graduate students, or for
these students to other points in time, then for you these same data consti-
tute a sample.

The distinction between a population and a sample is solely in the eyes
of the beholder. Two researchers looking at the same data may make dif-
ferent decisions about the generalization of interest.

The distinction is made on the basis of research purpose, and not on
the basis of data representativeness. Indeed, there is an old cliché that
much social science research involves unrepresentative samples and is con-
ducted “on rats and college sophomores.” Regardless of the mechanism of
sampling (e.g., a sample of local convenience), if the researcher is general-
izing to a larger population, the data constitute a sample, even though the
sample may not be very good, or representative.

In practice, researchers almost always treat their data as constituting a
sample. Researchers seem to be quite ambitious! For example, in conduct-
ing an intervention experiment with 10 first graders who are being taught
to read, even if the sample consists only of children who are family
acquaintances, scholars seemingly prefer to generalize their findings to all
first graders, everywhere, for all time.

Thus, when we take courses about quantitative ways to characterize
data, we tell people we are taking a “statistics” course rather than a
“parameters” class or a “statistics/parameters” class. In actuality, it might
be more accurate to say that we are taking a course about “statistics/
parameters.”

The judgment as to whether data constitute a population or a sample
is not semantic nit-picking. For some characterizations of data, formulas
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for a given characterization differ, depending on whether or not the data
are deemed a sample or a population. So two researchers who are comput-
ing the same result even for the same data may obtain different numerical
answers if they reach different judgments about the population of interest.

Characterizations of data computed for populations are termed
parameters. Parameters are always represented by Greek letters. For
example, if we have data for 12 doctoral students at a given time on the
variable X, and we only care about these students at this single point in
time, the data constitute a population. The arithmetic average, or mean, of
these 12 scores would be represented by the Greek letter µX.

Characterizations of sample data are called statistics. For example, if
we have the same data for 12 doctoral students at a given point in time,
and we believe we can generalize their results to other doctoral students,
and we desire to make this generalization, our data instead constitute a
sample. The arithmetic average, or mean, of these 12 scores would be rep-
resented by a Roman letter, such as MX or X .

As another mnemonic device to help distinguish populations from
samples, we will also use different symbols to represent the number of
scores in populations versus samples. We will use N to quantify the num-
ber of scores in a population, and n to quantify the number of scores in
samples.

��� Levels of Scale

Quantitative data analysis typically involves information represented in
the form of numbers (e.g., the dataset for a sample of n = 3 people: 1, 2,
3). However, different sets of the same three numbers (i.e., 1, 2, and 3)
may contain different amounts of information.

Furthermore, when we characterize different aspects of data, each
characterization presumes that the numbers contain at least a certain
amount of information. If we perform a calculation that requires more
information than is present in our data, the resulting characterization will
be meaningless or erroneous.

So the judgment about the amount of information each dataset con-
tains is fundamentally important to the selection of appropriate formulas
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for data characterizations. And for every way of characterizing data, we
must learn the minimum information that must be present to compute a
given statistic or parameter.

Four Levels of Scale

Quantitative researchers characterize the amount of information con-
tained in a given variable by using levels of scale conceptualized by
S. Stevens (1946, 1951, 1968) and others. The four levels of scale are:
(a) nominal/categorical, (b) ordinal/ranked, (c) interval/continuous, and
(d) ratio. More detail on levels of scale is provided by Nunnally (1978,
Ch. 1), Guilford (1954, Ch. 1), and Kirk (1972, Ch. 2).

The levels of scale constitute a hierarchy. Data at a given level of scale
contain all the information unique to the given level plus all the informa-
tion present at lower levels of scale.

For each level of scale, there are specific constraints on what numbers
we may use to represent the information contained in a variable. At the
same time, even given these constraints, infinitely many reasonable choices
always still exist for communicating a given variable’s information.

Knowing the numbers used to represent scores on a given variable
tells you nothing about the level of scale of the data. It is the information
present in the data, as determined by the mechanisms of measurement,
that determines scaling. And, as might be expected by now, because these
concepts are important, there are synonymous names for several of the
levels of scale.

Nominal or categorical data represent only that (a) the categories con-
stituting a given variable are mutually exclusive, and (b) every person scor-
ing within a given category is identical with respect to the particular
variable being measured. Human gender of a particular class of students is
a variable iff (if and only if) at least two students in this class have a differ-
ent gender. We usually take human gender in many groupings to be
dichotomous (i.e., a two-category variable). Worms are an entirely differ-
ent story. For people, the commonly-recognized categories are “male” and
“female.” Because very, very few people are hermaphrodites, presumably
the categories in our given class of students are mutually exclusive.

We also consider every person in a given category to be exactly identical
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with respect to the variable, gender. All males are exactly equally male, and
all females are exactly equally female. This does not mean that all the males,
or all the females, have the same physical measurements, sex appeal, money,
intelligence, or anything else. But every person in a given category of a given
variable is considered exactly the same as regards that variable.

Consider the data for the following four students on the variable gen-
der (X):

Name X

Steve M
Patty F
Judy F
Sheri F

In quantitative research we typically represent information using numbers,
rather than letters or other symbols.

In converting these data to numbers, we must honor the two pieces of
information present on the variable. Thus, we cannot assign the same
number (e.g., 0) to all four students, or we would misrepresent the reality
that the categories are mutually exclusive. Nor could we legitimately give
Patty one number, and Judy and Sheri a different number, or we would
misrepresent the reality that Patty, Sheri, and Judy are all considered
equally female.

Notwithstanding these constraints, which are absolute, there remain
infinitely many plausible choices. We could assign Steve “1,” and the
remaining students “2.” Or we could assign Steve “1,” and everyone else a
“0.” Alternatively, we could assign Steve “999,999,999,” and the remain-
ing students each “–5.87.” Or we could assign Steve “6.7,” and Patty,
Judy, and Sheri each “–100,000.”

Let us assume that a researcher selected the first scoring strategy (i.e.,
“M” = “1”; “F” = “2”). This is perfectly acceptable. But when analyzing
our data, it is essential to remember what information is present in the
data, and what information is not. Given the nominal level of scale of our
data, we know only that we have two mutually-exclusive categories, and
that everyone in a given category is identical with respect to gender. Our
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scoring does not mean that two males equal one female, or that concern-
ing gender a male is half a female!

Given the information present in nominal data, the only mathematical
operation permissible with such variables is counting. For example, we
can say that female is the category with the most people, or that there are
three times as many females as males.

Ordinal or ranked data contain the two features of nominal data but
also warrant that (c) score categories have a meaningful order. Let’s say
we have data for our sample of n = 4 people on a second variable, military
rank (Y):

Name Y

Steve General
Patty Captain
Judy Private
Sheri Private

When translating this information into numerical scores, there are
again both constraints, and infinitely many plausible alternatives. We can
assign scores of 1, 2, 3, and 3, respectively. Or we can assign scores of 9, 8,
1, and 1. Or we can assign scores of –0.5, –2.7, –1,000,000,000, and
–1,000,000,000.

We may not assign scores of 4, 4, 2, and 1, or we misrepresent charac-
teristic #1. We may not assign scores 1, 2, 3, and 4, or we dishonor char-
acteristic #2. We may not assign scores of 1, 3, 2, and 2, or we
misrepresent characteristic #3.

If we assign the scores, 3, 2, 0.5, and 0.5, respectively, we have hon-
ored all the necessary considerations for these data. But this does not
mean that Steve has exactly the same military authority as Patty, Judy, and
Sheri when they act in concert, even though 2 plus 0.5 plus 0.5 does math-
ematically sum to 3.

With ordinal data, as with data at all the levels of scale, we can always
perform counting operations. So, for these data we can say that Private is
the most populous category on this variable, or that 50% of the sample
had the rank of Private.

But now we can also perform mathematical operations that require
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ordering the scores. For example, we can now make comparative state-
ments, such as Patty has less authority than Steve. But we cannot quantify
how much less authority Patty has versus Steve.

Interval or continuous data contain the previous three information
features, but also (d) quantify how far scores are from each other using a
“ruler,” or measurement, on which the units have exactly the same dis-
tances. Consider the following scores for variable X, a measure of self-
concept on which scores of zero are impossible because sentient beings are
presumed to have some self-image:

Name X

Steve 183
Patty 197
Judy 155
Sheri 141

These data create a four-category intervally-scaled variable. Note that
it is the interval quality of the measuring “ruler,” and not the scores them-
selves, that must be equally spaced. Every additional point represents an
equal amount of change in self-concept.

We can again represent these scores in infinitely many ways, as long as
we do not misrepresent the information. For example, we could without
distortion convert the scores by dividing each score by 10. Doing so would
not dishonor the order of the scores, or the relative distances between
scores. If one person had a score twice as large as another person, any rea-
sonable reexpression of the scores would honor these (and all other rele-
vant) facts, and be equally plausible. Indeed, any preference for one versus
another of these reasonable representations would be completely a matter
of personal stylistic preference, and not matter otherwise.

Finally, with interval data we can perform mathematical operations of
addition and the reciprocal operation of subtraction, as well as multiplica-
tion and the reciprocal operation of division by constants, such as the
sample size. It makes no sense to add scores measured with a “ruler” on
which every interval is a different distance. But with interval scores these
operations are sensible.

We can now quantify the distances of scores from each other. For
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example, we can say that the distance between the scores of Patty and
Steve is the same as the distance between the scores of Judy and Sheri.

Ratio data contain the prior four information features, but also (e)
include the potential score of a meaningful zero. A zero is said to be mean-
ingful if the score of zero means the complete absence of the variable being
measured. For example, if your net financial worth is $0, this means that
you have exactly no money, which is both meaningful (in the sense of rep-
resenting the exact absence of any money) and possible.

For many social science variables, a meaningful zero is not sensible.
For example, it is impossible to imagine that a living person to whom we
could administer an IQ test would have an IQ score of exactly zero (i.e., a
complete absence of intelligence).

Scaling as a Judgment

Life is not always about definitively right or wrong choices, and neither is
statistics. For many physical measurements, such as height in centimeters
or weight in pounds, clearly data are being collected at the interval level of
scale.

But most constructs in the social sciences are abstract (e.g., self-
concept, intelligence, reading ability) and are not definitively measured at
a given level of scale. For example, are IQ data intervally-scaled? Is the 10-
point difference between Bill with an IQ or 60 and Jim with an IQ of 70
exactly the same as the difference between Carla with an IQ of 150 and
Colleen with an IQ of 160?

Probably all methodologists would agree that measurements of this
sort are at least ordinally-scaled. Furthermore, many statisticians would
treat such data as interval because they judge the data to truly approxi-
mate intervally-scaled data. Other methodologists are statistically conser-
vative, treat such data as ordinal, and only perform analyses on the data
that require only ordinal scale. You can discern the two camps at profes-
sional meetings, because the latter always wear business attire and the for-
mer wear blue jeans.

You might feel more comfortable about these judgments if you recog-
nize that even physical measurements do not really yield perfectly interval
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data. All measurements, even physical measurements, yield scores with
some measurement error, or unreliability (see Thompson, 2003). For
example, even the official clock of the United States, which measures time
by measuring atomic particle decay, loses 1 second every 400 years. So, if
we consider measurement reliability, no “rulers” have intervals that are
perfectly, exactly equal.

Transforming Scale of Measurement

Some variables can inherently be measured only at the nominal level of
scale. For example, gender, or religious preference, or ethnic background,
can only be measured categorically.

At the other extreme, some variables can be measured at any level of
scale, depending on how the researcher collects or records the scores. Con-
sider the following measures of how much money these four people were
carrying at a given point in time:

Name X1 X2 X3

Steve $379 1 Rich
Patty $9 4 Poor
Judy $78 3 Poor
Sheri $264 2 Rich

Given these three sets of scores, all measuring the variable wealth, X1

is certainly at least intervally-scaled, because the “ruler” measuring finan-
cial worth at a given point in time in dollars measures in equal intervals.
The financial value (though perhaps not the personal differential value) of
a change in any $1 is constant throughout the scale.

The variable X2 is ordinally-scaled. We have discarded information
about the distances of datapoints from each other. We can still say that no
two people have the same wealth (i.e., are in the same category), and we
can still order the people. But with access only to the X2 data, we can no
longer make determinations about how far apart these individuals are in
their wealth.

The variable X3 is nominally-scaled. Although the categories are still
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ordered, we can no longer order the individual people. We have either col-
lected relatively limited information, or have chosen to discard consider-
able information about wealth.

In general, collecting data at the highest possible scale is desirable. For
example, if the researcher collects intervally-scaled data, the data can
always be converted later to a lower level of scale. Conversely, once data
are collected at a lower scale level, the only way to recover a higher level
of scale is to recollect the data.

Because statistics require specific levels of scale to properly conduct
their required mathematical operations, some statistics cannot be com-
puted for data at some scale levels. Also, more analytic options exist for
data collected at higher scale levels.

However, in statistics there are exceptions to most general rules.
When we are collecting information that is particularly sensitive, people
may be more likely to respond if data are collected at lower levels of scale.
For example, we can ask people how many times they have sex in a
month, or how frequently they go to church in a year, or how much
money they made last year. These data would be intervally-scaled.

But people may be more likely to respond to such questions if we
instead presented a few categories (e.g., 0–2 times/month, 3–8 times/
month, more than 8 times/month) from which respondents select their
answers. This measurement strategy collects less information, and thus is
less personal. Research always involves many tradeoffs of the good versus
bad things that occur when we make different research decisions. Never-
theless, the conscious decision to collect data at lower scale levels should
be based on a reflective analysis that you can still do whatever analyses
you need to do to address the research questions that are important to
you.

Normative versus Ipsative Measurement

Cattell (1944) presented a related measurement paradigm that distin-
guishes between normative and ipsative measurements. Normative mea-
surement collects data in such a way that responses to one item do not
mechanically constrain responses to the remaining items.
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Here are two items from a survey measuring food preferences:

1. Which one of the following foods do you most prefer?

A. monkfish B. filet mignon with bernaise
C. mushroom risotto D. crème brûlée

2. Which one of the following wines do you most prefer?

A. sauvignon blanc B. cabernet sauvignon
C. pinot noir D. riesling

These items yield normative scores.
The response to one item may logically constrain responses to other

items. For example, people who love beef with bernaise sauce may have
some tendency to prefer cabernet sauvignon. But responses to the first
item do not physically constrain the choice made on the second item. Peo-
ple can declare that their favorite food is monkfish, and that their favorite
wine is riesling. Indeed, some people may actually like that pairing.

Ipsative measurement collects data such that responses to a given item
mechanically constrain choices on other items. Items of this sort have
forced-choice features, such as requirements to rank-order choices or to
allocate a fixed number of points across a set of items.

The following item, with one respondent’s choices shown, yields
ipsative data:

1. Please allocate exactly 100 points to show how much you like each
of the following types of wine by awarding more points to wines
you most prefer.

A. sauvignon blanc 10
B. chardonnay 15
C. pinot noir 20
D. merlot 10
E. cabernet sauvignon 45
F. malbec 0
G. riesling 0
TOTAL 100
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This individual clearly likes cabernet.
We can at least make reasonable intraindividual comparisons with

ipsative data. For example, we can argue that this person likes cabernet
three times as much as chardonnay.

These data are ipsative, because the decision to allocate a given num-
ber of points to one choice necessarily constrains allocations for all other
options. And we have no information about whether this individual
despises wine, thinks wine is nice sometimes, or adores wine. This makes
it difficult to use ipsative data to make meaningful interindividual compar-
isons of results across individuals, if that is our purpose (L. Hicks, 1970).

Related data could be collected normatively, as illustrated in these
results, which measure the actual spending decisions of two hypothetical
individuals:

2. Please report how many dollars you would like to spend per month
on each of the following types of wine, if your income was not a
consideration.

Bruce Julie

A. sauvignon blanc $90 $0
B. chardonnay $295 $125
C. pinot noir $360 $0
D. merlot $110 $35
E. cabernet sauvignon $895 $45
F. malbec $0 $0
G. riesling $0 $0
TOTAL $1,750 $205

These are normative and not ipsative data, because responses regarding
one wine do not in any mechanical way constrain responses for the
remaining wines.

Likert (1932) scales are often used to collect normative data about
attitudes or beliefs. Likert scales present response formats with numerical
scales in which some or all of the numerical values are anchored to words
or phrases. The numerical value and word pairing might be: 1, Strongly
Agree; 2, Agree; 3, Neutral; 4, Disagree; 5, Strongly Disagree. If the
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researcher judges the psychological distances between these alternatives to
be equal, then the data collected are arguably intervally-scaled.

At first impression, it may seem that normative data should be pre-
ferred over ipsative data. Normative data are usually intervally-scaled, and
it may seem undesirable to constrain responses when collecting data.

Ipsative data collection tends to make responding more complex,
because specific response rules must be followed exactly. Respondents
may resent restrictions that have no obvious basis. Also, ipsative response
formats as a statistical artifact yield dependencies among item responses
(Kerlinger, 1986, p. 463). That is, because responses to one item (e.g., a
high allocation of points to an item) constrain responses to other items,
the relationships between item responses tend to be inverse (i.e., high rat-
ings on one item necessarily yield lower ratings on other items).

However, sometimes ipsative data collection is necessary. For exam-
ple, in an investigation of phenomena involving variables that are all
highly treasured, normative data collection might result in every respon-
dent’s rating every choice at the extremes of the response format. If
respondents were asked to rate the importance of health, economic suffi-
ciency, attractiveness, and honor on 1-to-5 scales, it would not be unrea-
sonable for everyone to rate all four items “5.”

In such situations, reasonable variability in scores can only be
achieved by using ipsative measurement. Furthermore, in some cases it
might be argued that ipsative measurement is most ecologically-valid (i.e.,
best honors the way in which people really function in everyday life). For
example, people may cherish a great many outcomes (e.g., health, eco-
nomic sufficiency). But given time and other resource constraints, we can-
not pursue every possible thing about which we care.

In this example, ipsative measurement not only might be necessary to
produce score variability, but also may best honor the ecological reality.
At least, that seems to be the thinking underlying Rokeach’s (1973) devel-
opment of his Values Survey, which requires respondents to rank-order
the different human values he lists, with no ties.

Ipsative measurement is used on a variety of psychological measures.
For example, ipsative measurement is used on some tests intended to mea-
sure psychopathology. Items on such measures may ask unusual questions
that focus on atypical thought or preference patterns. The items may pose
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questions virtually of the ilk, “Would you most rather be (a) a pumpkin,
(b) an air conditioner, or (c) a fork?”

��� Some Experimental Design Considerations

Designs

Experiments are studies in which at least one intervention group receives a
treatment, and at least one control group receives the usual treatment
(e.g., conventional reading instruction) or no treatment (e.g., placebo
sugar pills). In true experiments, the mechanism for assigning participants
to groups is random assignment. Random assignment has the desirable
feature that groups will be equivalent at the start of the experiment on all
variables, even those the researcher does not realize are actually impor-
tant, iff the sample size is sufficiently large that the law of large numbers
can function. The mechanisms of random assignment simply do not work
well when sample size is very small.

Only experimental designs allow us to make definitive statements
about causality, although other research designs may suggest the possibili-
ties of causal effects (see Odom, Brantlinger, Gersten, Horner, & Thomp-
son, 2005; Thompson, Diamond, McWilliam, Snyder, & Snyder, 2005).
Recent movements to emphasize evidence-based practice in medicine
(Sackett, Straus, Richardson, Rosenberg, & Haynes, 2000), psychology
(Chambless, 1998), and education (cf. Mosteller & Boruch, 2002;
Shavelson & Towne, 2002) have brought an increased interest in experi-
mental design.

Classically, designs were portrayed by an array of symbols presented
on an implicit timeline moving from earlier on the left to later on the right
(D. T. Campbell, 1957; Campbell & Stanley, 1963). “R” indicates ran-
dom assignment to groups, “O” indicates measurement (e.g., a pretest),
and “X” indicates intervention. For example, a two-group true experi-
ment with no pretesting might involve

R X O
R O
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Or, if both groups were pretested, the design might be

R O X O
R O O

A classic design is the Solomon four-group design. The structure of the
design is:

R O X O
R O O
R X O
R O

This design involves two intervention groups and two control groups.
Designs are limited only by the researcher’s creativity and thoughtful-

ness. Consider the design for an education intervention below:

R O O O X O O O
R O O O O O O
R O O O O O O

This design involves one intervention and two control groups. Perhaps one
control group receives regular reading instruction, while the second group
receives no reading instruction, insofar as these participants are queued up
to receive the intervention after the experiment is over (i.e., constitute a
wait-list control).

The design has several positive features. First, because several
posttests (e.g., annual achievement testing) are administered, the design
evaluates not only whether the immediate effects of the intervention are
positive, but also whether the effects are sustainable. Second, the design
can be used to evaluate intervention impacts on average achievement, but
because repeated measurements are taken both before and after the inter-
vention, the design can also be used to evaluate intervention effects not
only on average achievement, but also on rates of learning.

The six measurements can be plotted both for the groups and for indi-
viduals. The slopes of the lines drawn from contiguous points represent
the rates of learning. If the intervention positively impacts the rate of
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learning, the lines connecting the plotted scores will be steeper after the
intervention than before the intervention. Impacting rates of learning may
have sustained effects even more important than immediate impacts,
because changing how fast people learn may have more dramatic cumula-
tive consequences over time than do the immediate impacts on learning.
Latent growth curve modeling (Duncan & Duncan, 1995; Duncan,
Duncan, Strycker, Li, & Anthony, 1999) evaluates these various dynam-
ics, although this analysis is beyond the scope of the present, introductory
text. Nevertheless, we can intuit the potential richness of data yielded by
such designs.

Historically, designs were evaluated in terms of the ability to address
two sorts of design validity issues (Campbell & Stanley, 1963). Note that
design validity should not be confused with measurement validity (see
Thompson, 2003, Ch. 1, for further discussion of measurement issues).
The similarity of wording for these two unrelated concepts is merely
another effort to invoke confusing language in statistics.

Internal Design Validity

Internal design validity addresses concerns about whether we can be cer-
tain that the intervention caused the observed effects. Without internal
design validity, study results are simply uninterpretable. Campbell and
Stanley (1963) listed threats to internal design validity, of which seven are
considered here.

Selection threats to design validity occur if there are biases in assign-
ing participants to groups. For example, in the following design,

O X O
O O

if smarter students are disproportionately assigned to treatment, group
selection dynamics are confounded with intervention effects. Even if we
statistically adjust for initial group differences, by computing and compar-
ing gain scores (∆Xi = posttesti – pretesti), we will not have removed the
rate of learning (i.e., aptitude) differences across the groups, and the

26 FOUNDATIONS OF BEHAVIORAL STATISTICS



results will remain confounded. Obviously, this is why we prefer random
assignment to groups.

Experimental mortality involves differential loss of participants from
groups during the intervention. For example, if the intervention group
showed posttest improvement, but 35% of the intervention group with-
drew from the study, while only 5% of the control group dropped, the
results are confounded by the presence of potentially selectively missing
data.

History threats to internal design validity occur when unplanned
events that are not part of the design occur during the intervention. For
example, if one school is the intervention site, and another school is the
control school, during the intervention school year an intervention school
teacher might win hundreds of millions of dollars in a lottery, and begin
showering the school with new computers, and even books. These effects
may confound the intervention effects such that we are not certain what
impacts are attributable to the designed intervention.

Maturation effects involve developmental dynamics that occur purely
as a function of the passage of time (e.g., puberty, fatigue). For example, if
the control group is a first-period high school class, and the intervention
group is a last-period class, the differential impacts of fatigue and hunger
may be confounded with intervention effects.

Testing involves the impacts of taking a pretest on the posttest scores.
A pretest (e.g., a first-grade spelling test) may focus participants on tar-
geted words. These effects might become confounded with intervention
effects, for example, if the design was

R O X O
R O

Instrumentation may compromise result interpretation if different
measures (e.g., Forms X and Y of a standardized test) are used in different
groups, or over time. For example, instrumentation effects might compro-
mise this design:

R OX X OX

R OY OY
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Statistical regression occurs when extreme scores exhibit the statistical
phenomenon called regression toward the mean. The phenomenon refers to
the fact that extreme scores tend to move toward the group mean over time.

Sir Francis Galton, British genius and polymath, first described this
statistical phenomenon (Galton, 1886). At the Great Exhibition, Galton
measured the heights of families at the event. He observed that extremely
tall or short parents tended to have adult children whose heights more
closely approximated typical height. Clearly, the phenomenon is purely
statistical, and not some function of the exercise of will or judgment dur-
ing procreation.

The phenomenon can compromise designs, for example, when partici-
pants with extreme scores are assigned to groups. Thus, in a one-group
design, if people with very high blood pressure on pretest are assigned to
treatment, in the long run their scores will tend toward the mean even
without treatment. The effects of medication and the statistical regression
effect will be confounded, and we will be unable to ascertain with confi-
dence what are the intervention effects.

External Design Validity

External design validity involves the question of “to what populations,
settings, treatment variables, and measurement variables can this effect be
generalized?” (Campbell & Stanley, 1963, p. 175). Here, three threats will
be considered.

Reactive measurement effects occur if pretesting affects sensitivity to
the intervention. For example, a vocabulary pretest might impact the
effects of a vocabulary intervention, such that the intervention effects
might not exactly generalize to future nonexperimental situations in which
the intervention is conducted without pretesting.

In the 1920s, the German physicist Werner Heisenberg proposed his
Uncertainty Principle, which essentially says that the more precisely the
position of atomic particles is determined, the less precisely the momen-
tum of the particles can be simultaneously known. A related but more gen-
eral measurement paradox says that “observing a thing changes the
thing.” If we don’t measure, we do not know what happens. But what
happens in the absence of our measurements might be different than when
we measure. However, in some cases reactive measurement might be
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avoided by using unobtrusive measures (Webb, Campbell, Schwartz, &
Seechrest, 1966).

Hawthorne effects occur when participants in the intervention group
alter their behavior because they are aware that they are receiving special
attention. The name of the effect originates from a 5-year study conducted at
the Hawthorne Plant of the Western Electric Company in Cicero, Illinois,
during the Great Depression. The researchers found that when working con-
ditions were improved in the intervention group, productivity improved.
However, even when less favorable conditions were imposed, productivity
also improved. The participants were apparently responding to the general-
ized notion of public specialized treatment, as opposed to the intervention
itself. Therefore, such intervention effects might not generalize once the
intervention was applied to everyone, or at least was widely available,
because the novelty of the treatment would no longer be a factor.

John Henry effects occur when participants in the control group
behave differently because they know that they are in the control condi-
tion. The effect is named after the legendary John Henry, The Steel
Driving Man, who fought harder than he presumably would have because
he knew he was in a contest and his performance was being evaluated. In
the legend, John Henry was an African American of incredible strength
who drove railroad spikes when track was being laid. When a steam-
driven spike drill was being introduced, John Henry competed in a race
with the drill to determine whether he or the drill could drive more spikes.
The race was close, and John Henry died at its end.

A double-blind design is one way to avoid Hawthorne and John
Henry effects. In this design, the participants do not know whether they
are receiving the intervention or a placebo treatment (e.g., sugar pills), and
the treatment administrators (e.g., nurses) do not know what treatment
they are providing. Of course, double-blind studies are feasible in medi-
cine, but may not be possible in education or psychology in cases where
the nature of the intervention simply cannot be obscured.

Design Wisdom

Here is one of the most important things I can tell you about doing
research. When selecting variables and designing research, before you col-
lect any data whatsoever, first “List [all] possible experimental findings
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[i.e., results] along with the conclusions you would draw and the actions
you would take if this or another [any/every other] result should prove to
be the case” (Good & Hardin, 2003, p. 4). This exercise forces early rec-
ognition of fatal design flaws before it is too late to correct problems.

Some Key Concepts

Statistics are computed so that we can understand and communicate
the dynamics within data. Statistics are selected given the researcher’s
purpose. Usually several statistics will be needed to characterize rele-
vant data features within a given study. Both subjective judgment and
reasonableness must be exercised when selecting statistics.

Statistics may be used to characterize data involving only a single
variable. But science is about the business of identifying relationships
that occur under stated conditions, and so scientific studies inherently
involve at least one dependent variable and at least one independent
variable.

The selection of ways to characterize data is also governed by a
decision about whether the data constitute a sample or a population.
And the levels of scale of variables impact which statistics are and are
not reasonable in a given research situation.

Only true experiments, in which treatment conditions are ran-
domly assigned, can definitively address questions about causality. To
yield definitive conclusions, studies must be organized to mitigate
threats to internal and external design validity.

��� Reflection Problems ���

1. Name a nominally-scaled, an ordinally-scaled, and an intervally-scaled vari-

able, with each of the three variables involving four categories. Then

name five equally-reasonable ways to assign numbers to the categories of

each of the three variables (i.e., scoring rubrics).

2. Think of a situation, not described in this book, in which ipsative measure-

ment might be preferred over normative measurement.

3. Identify a dependent variable of particular interest to you. Then select the

two independent variables that you consider the best possible predictors of

this outcome. In a study using these three variables, would you hold any-

thing constant? What moderator variable might be of greatest interest?

30 FOUNDATIONS OF BEHAVIORAL STATISTICS



2

Location

D
escriptive statistics quantitatively characterize the features of
data. Although “statistics” are always about sample data,
“descriptive statistics” are about either sample or population
data. (You have already been duly forewarned about the confus-

ing language of statistics.)
Four primary aspects of data can be quantified: (a) location or central

tendency, (b) dispersion or “spreadoutness,” (c) shape, and (d) relation-
ship. The first three classes are called univariate statistics, in the sense of
this term meaning that these descriptive statistics can be computed even if
you have data on only one variable. The fourth category of descriptive sta-
tistics requires at least two variables. In the simplest case, when there are
only two variables (e.g., X and Y), or there are more than two variables
but the variables are considered only in their various pairwise combina-
tions (e.g., A and B, A and C, B and C, and never all A, B, and C simulta-
neously), relationship statistics encompass bivariate statistics.

The statistics computed across these four classes are independent. This
means, for example, that knowing the central tendency of the data tells
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you nothing about the numerical quantification of the dispersion of the
data, or that knowing the shape of the data tells you nothing about the
numerical quantification of the location of the data.

The independence of the four categories is only logical. If any two of
the characterizations performed the same function, there would be fewer
than four categories. Even the most wild-eyed statisticians can only go so
far in trying to be confusing!

��� Reasonable Expectations for Statistics

Formulas for descriptive statistics were not transmitted on stone tablets
given to Moses, nor otherwise divinely authored. Instead, different human
people developed various formulas as ways to characterize quantitative
data.

Sometimes people are noble, honorable, and insightful. But sometimes
people are also lazy, sloppy, or simply wrong. Because these formulas
were created by fallible people, the prudent scholar does not take these
equations as givens, and instead evaluates whether the formulas seem to
be reasonable.

Thoughtful, critical, and responsible judgment requires initially for-
mulating expectations about what might be deemed reasonable for a
given way of characterizing data. These different expectations apply to
all the entries in a given class of descriptive statistics. If the descriptive
statistics are indeed reasonable, they will behave such that they always
meet these expectations. Otherwise, the characterizations yielded by
these formulas are erroneous, and should be discarded in favor of cor-
rect formulas.

There are advantages from understanding statistics (our focus), rather
than merely memorizing unexplained formulas. Only when we fully
understand the underlying logics of the formulas, as well as which data
features do and do not affect results, do we really understand our charac-
terizations of data (and the data we are using these characterizations to
understand).
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��� Location Concepts

Location or central tendency descriptive statistics address the question
“Which one number can I use to stand for or represent all my data?”
Obviously, this can be a big job for one number to do. The quality of the
characterization of the location of a dataset along a numberline is
situationally conditional upon (a) the number of scores in the data and (b)
the spreadoutness of the data.

When sample size is smaller, logically a single number will do a better
job of characterizing central tendency. For example, when sample size is
n = 1, a single location statistic can do a superb job of representing the
dataset! Just use the one scored score to represent the entire dataset.

Central tendency descriptive statistics may be less suitable as sample
size gets larger. But even at huge sample sizes, location descriptive statis-
tics still do very well at representing data when scores are very similar to
each other, and perfectly well when all the scores are identical, even if
sample size is huge.

The procedures for computing the characterizations of location are
the same for both sample and population data. However, we will see that
for other classes of descriptive statistics (e.g., dispersion) different proce-
dures are required for sample as against population data.

Expectations for Location Statistics

Descriptive statistics each fall into one of two “worlds”: (a) the score
world, or (b) the area world. Scores as they are originally measured are
(obviously) in the score world, and have a particular measurement metric.
For example, scores may be measured in dollars, pounds, or number of
right answers.

We will first encounter area-world descriptive statistics once we con-
sider the second class of descriptive statistics, dispersion statistics, in
Chapter 3. Only then will the fundamentally important concept of the two
worlds of statistics become more apparent.

The first minimal expectation for location descriptive statistics, which
yield a single number to represent all the scores, is that location descriptive
statistics ought to be in the same metric as the scores themselves. Thus, if
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the unit by which we measure knowledge is the number of correct test
answers, the corresponding location descriptive statistics should also be in
exactly the same metric. So, all location statistics are members of the score
world.

However, it seems unreasonable to expect that location descriptive
statistics must universally include only numbers that are actually scored.
For example, if we have a large group of professional football linemen
who all weigh between 275 and 285 pounds, it might be reasonable to use
the number, 280 pounds, to represent the entire dataset, even if no line-
man weighs exactly 280 pounds.

But it does seem reasonable to demand that the one number we use
for a location descriptive statistic for a given dataset ought to be in one
sense or another in the center of the scores. This leads to a second expecta-
tion when data are at least ordinally-scaled, such that the scores have a
meaningful order, that at a bare minimum, a location descriptive statistic
for a given dataset should be no lower than the lowest score and no higher
than the highest score.

Univariate Location Graphics

Most of the mathematical methods for characterizing data, including
descriptive statistics, were developed over the course of the previous sev-
eral centuries, and many of these originated during the 1900s. These
mathematically-computed characterizations of data can be very useful in
efforts to understand or communicate the stories that data have to tell.

But graphics are also a very useful way to explore or disseminate the
insights lurking in data (Tukey, 1977). In some cases graphics make obvi-
ous data dynamics that would otherwise be obscure. Sometimes graphics
are also more economical in representing data dynamics. And when com-
municating our scholarly findings, we had best remember that some peo-
ple prefer numbers, some people prefer pictures, and some people like to
have both numbers and graphics.

The influential recommendations of the Task Force on Statistical
Inference of the American Psychological Association (APA) emphasized
that there are many “ways to include data or distributions in graphics. . . .
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Many of these procedures are found in modern statistical packages. It is
time for authors to take advantage of them and for editors and reviewers
to urge authors to do so” (Wilkinson & APA Task Force on Statistical
Inference, 1999, p. 602).

Histograms are commonly used to portray a single set of scores (i.e., a
variable or a constant). A histogram presents a numberline oriented with
lower numbers to the left and higher numbers to the right. Scores are often
represented by asterisks located on the numberline at a position corre-
sponding to score values, although some software uses symbols other than
asterisks.

When datasets are relatively small, each person is represented by a
unique asterisk. When datasets are larger, asterisks represent multiples of
people (e.g., 5, 10) who have a common score. There is no firm rule about
when datasets become small or large. In any case, when presenting such
graphs, you should inform readers how many scores each asterisk repre-
sents.

Table 2.1 presents data for scores of seven people on the variables X
and Y. The variable X is the number of cups of coffee consumed on one
day, and Y is the number of phone calls each person placed on the same
day. Figure 2.1 presents the two histograms for these two variables, with
each asterisk representing the score of a single person.
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TABLE 2.1. Scores of Seven People on X and Y

Variable

Participant X Y

Jennifer 5 5
Stephanie 5 4
Elizabeth 5 3
Paul 2 3
Sarah 1 3
Christopher 1 2
Michael 1 1



��� Three Classical Location Descriptive Statistics

Traditionally, three location descriptive statistics have been frequently
used in the social sciences. There are other location descriptions (e.g., the
geometric mean, the harmonic mean, the contraharmonic mean) that are
beyond the scope of the present treatment, in part because they are less
frequently reported (interested readers are referred to Glass & Stanley,
1970). As we shall see once we cover the descriptive statistics that charac-
terize shape, for some data the three descriptive statistics yield the same
three numbers for a given dataset, and for some data all three estimates
may differ even for a given single dataset.

Mode

The mode is the most frequently scored score, and therefore, unlike the
other two commonly-used location descriptive statistics, the mode is
always a scored number. Of course, this also ensures that the mode is in
the metric of the original scores, and must fall within the range of the
scored scores.

For data that constitute a constant (i.e., all the scores are the same),
that single scored number is always the mode. Otherwise, identifying the
mode requires counting the number of scores in each variable category.
No ordering of categories is required, nor are any addition or multiplica-
tion operations. Counting is permissible with data at all levels of scale, so
the mode can be computed even for nominally-scaled data.

Because the mode is in the same score-world metric as the original
data, the mode for variable Y in Table 2.1 is not 3.0, but is instead more
descriptively reported as “3.0 phone calls.” The mode for variable X in
Table 2.1 is less obvious, because the scores of 1 cup of coffee and 5 cups
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of coffee are each scored three times, which is more than any other single
score.

Such data are said to be bimodal, and both modes (1 cup and 5 cups)
must be reported. When data have three or more scores that occur equally
often and are most frequently scored for a dataset, we generally deem the
data to have no mode.

As previously intimated, the mode will work perfectly to represent
data that define a constant (i.e., all the scores are the same). However, for
variables, although the mode must lie within the range of scored scores
(sometimes barely), it is troubling that the mode can literally be at the very
boundary of scored scores (e.g., the modes for variable X in Table 2.1 are
literally at both score extremes for these intervally-scaled data). Perhaps
these limitations are why the mode is infrequently reported, and in turn
why there is not a commonly-used symbol for this descriptive statistic.

The mode is a location descriptive statistic that is only “in the center”
in the loosest possible sense. However, for nominally-scaled data, the
scores have no order and no numerically-meaningful boundaries, so this
deficiency is not a consideration for nominal data. The mode is the only
location statistic that can be computed for nominally-scaled data, and so
must be used for such data, if central tendency is an interest.

Given the limitations of the mode, for data higher than nominally-
scaled the mode in practice is rarely interpreted. An exception occurs if
you are an apparel manufacturer, rather than a social scientist. People will
usually not buy brassieres or shoes that do not fit well, even if the bras-
siere or shoe almost fits a lot of people. So if you are in the apparel busi-
ness, the first size you would select to manufacture is the mode size,
because it not only will fit people, and thus potentially be bought, but also
will indeed fit the largest audience of potential buyers.

Median

The median, or 50th percentile, can be computed for data that are at least
ordinally-scaled. Conceptually, the median is the number, either scored or
unscored, that divides the ordered scores into two groups of equal sizes.
Because we cannot put nominally-scaled scores into any meaningful order
(i.e., no real ordering information is present), the median cannot be rea-
sonably computed for nominal data. That is, you can erroneously put
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nominal scores into some arbitrary order, and estimate the median, but the
estimate is just as senseless as the ordering itself.

The median is “in the center” of the scores in the sense that half the
scores are above the median and half are below the median. Thus, for the
interval scores {1, 2, 4, 5 speeding tickets}, the median is “3.0 tickets,”
which is not a scored score. The median for the Y scores in Table 2.1 is
also 3.0, albeit “3.0 phone calls,” which in this case is a scored score, and
indeed coincidentally is also the mode.

The symbol for the median on variable X is “MdnX.” The formula for
the median is

MdnX = P50 = L + [((q * n) – cum.f) / f] (2.1)

where

q is the percentile being computed, which for the median is always the
number 50, so q = 0.50;

n is the number of scores in the distribution;
L is the lower limit of the score interval of length 1 containing the q

nth frequency from the bottom of the score distribution;
cum.f is the cumulative frequency up to L; and
f is the number of scores in the score interval containing the q nth fre-

quency.

The formula for the parameter median would be the same, but we would
symbolize the number of scores in the population with N.

For the sample data on X from Table 2.1, the cumulative frequency
distribution presented in Table 2.2 would be computed. Here q * n = 0.50
* 7 = 3.5. The score interval containing the 3.5th score is the interval run-
ning from 1.5 to 2.5. The lower limit, L, of this score interval is 1.5. The
cumulative frequency up to L is 3. There is f = 1 score in the score interval
containing the 3.5th score. So, for these data we obtain:

MdnX = 1.5 + [((0.50 * 7) – 3) / 1]
= 1.5 + [(3.5 – 3) / 1]

= 1.5 + [0.5 / 1]
= 1.5 + 0.5

2.0
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For these data, the median is “2.0 cups of coffee” (and not simply 2.0). In
this case, the median is a scored score.

Unlike the mode, the median cannot be all the way at the boundaries
of the ordinal or the interval scores, except when all the scores are identi-
cal. And unlike the mode, the median does have the desirable feature that
all the scores are considered in computing the median.

Iff (if and only if) data are intervally-scaled, the distances of the scores
from the median become meaningful. For intervally-scaled data, the
median is “in the middle” of the scores in the sense that the sum of the
absolute distances of the scores from the median will be smaller than or
equal to the sum of the absolute distances of the scores from any other
benchmark (i.e., “How far is each score from this number?”) scored score
or unscored number (Horst, 1931).

However, the computation of the median does not itself take into
account any information about score distances. This is necessary for
ordinally-scaled data, which contain no information about distances. But
when we have intervally-scaled data, such information is present, and
sometimes we want to capitalize on all the information features contained
in the data.

Mean

The mean is the arithmetic average of intervally-scaled data, and does take
into account score distances as part of its computation. As noted in Chap-
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TABLE 2.2. Cumulative Frequency Distribution
for the Table 2.1 X Data

Score Frequency Cumulative frequency

5 3 7
4 0 4
3 0 4
2 1 4
1 3 3

n = 7



ter 1, the symbol for the mean is MX or X for sample data, and µX for pop-
ulation data.

The formula for the mean of sample data is

MX = ΣXi / n (2.2)

where the Greek capital letter sigma (Σ) means “add them all up,” Xi are
the scores of each of the i individuals in the dataset, and n is the number of
scores in the sample. Note that MX does not have an i subscript, because
the mean is one number representing the entire dataset, and may not even
be any individual’s scored score in the data, and so the use of an i subscript
would be inappropriate. The parameter formula for population data is

µX = ΣXi / N (2.3)

where N is the number of scores in the population.
For the variable X Table 2.1 data, the sample mean, MX, equals

20.0/7, or to three decimal places, “2.857 cups of coffee.” Remember that
the modes were “1 cup” and “5 cups,” and the median was “2.0 cups of
coffee.” For these data, each of these three location descriptions yields a
different answer, and so the selection of a particular location description
might impact our interpretation of results even for a single dataset.

Of course, we are not limited to computing only a single location
descriptive statistic, if our data are higher than nominally-scaled, and
computing several helps us to understand our data. But typically scholars
report only one such characteristic, perhaps because journal editors are so
protective of journal signature space. We will learn later in this chapter
when some of these location results will be identical for a dataset, and
when they will differ.

The mode is “in the center” in the loose sense of being some (any)
scored score. The median, even for ordinally-scaled data, is “in the center”
in the sense of dividing the ordered scores into two equal-sized groups of
lower and higher scores. The mean is “in the center” in a physical sense of
being the fulcrum underneath the numberline at the point that the histo-
gram would balance.

The mean has the property that if you subtract the mean from each of
the scored scores, yielding deviation scores (symbolized by lowercase let-
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ters, such as xi or yi), the deviation scores will always add up to exactly
zero (e.g., Σxi = 0.0). This implies that you could create a numberline by
marking equal intervals on a 2″-by-6″ board, possibly ranging from 0
pounds to 12 pounds, and then place lead objects weighing between 0 and
12 pounds at the corresponding locations on the board (e.g., a 3.5-pound
object at the location 3.5 on the board/numberline); the board (or seesaw/
teeter-totter) would be level if placed on a fulcrum or balance point at
whatever location corresponded to the mean (e.g., “5.75 pounds” if that
was the mean weight of the lead objects).

The mean also is “in the middle” of the scores in the sense that the
sum of the squared distances of the scores from the mean will be smaller
than the sum of the squared distances of the scores from any other bench-
mark (i.e., “How far is each score from this number?”) scored score or
unscored number. These two characteristics of the mean make the mean a
great benchmark to use when we need to compare each score to some one
benchmark number to help characterize dynamics within our data.

Rounding

When dividing or multiplying numbers, it is possible to obtain answers
that are nonterminating. For example, 2 divided by 3 yields a nontermina-
ting result. There are two options for reporting nonterminating results.
First, the nonterminating number or set of numbers can be represented by
placing a line over the nonterminating values. For example, 2 divided by 3
can be reported as 0.66. Second, rounding can be employed with
nonterminating numbers, just as rounding can be employed with any deci-
mal values in real numbers.

In the social sciences, descriptive statistics are rarely reported to more
than either two or three decimal values, partly because for most of our
variables extremely small differences are not meaningful or noteworthy.
For example, it is usually sufficient to compute the mean number of right
answers on a test as 57.6 or 57.63, but it probably makes no sense to
report the mean as “57.63289366567 right answers.” The “289366567”
part of the number is trivial.

Reporting an excessive number of decimal values communicates more
precision than is really present in most data. However, when our descrip-
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tive statistics can be employed by others to replicate our analyses (as in a
textbook), or to conduct analyses different than ours (because some sec-
ondary analyses do not require the original data), then more decimal val-
ues may be used in reporting.

Rounding requires, first, a decision about the desired number of deci-
mal places (e.g., two). Then one rounds from the number at the decimal
place immediately beyond the targeted number of decimal places (e.g., the
third decimal place). If the number we are rounding from is less than 5, we
round down (e.g., 3.744 becomes 3.74 if we are rounding to two decimal
places). If the number we are rounding from is greater than 5, we round
up (e.g., 3.746 becomes 3.75 if we are rounding to two decimal places).

When the number we are rounding from is a 5, special rules apply
(Tukey, 1977). There are nine possible numbers in the location from
which we are rounding where rounding may be necessary (i.e., 1, 2, 3,
. . . , 9). Arguably, rounding is not being performed when in a descriptive
statistic a zero is to the right of the targeted number of decimal places.

When we are rounding from descriptive statistics, four numbers are
below 5 and four numbers are above 5. To avoid rounding from 5, and
consistently biasing rounded results upward or downward, we round half
the time from 5. Specifically, we round up if the rounded number will
become even (e.g., 3.735 becomes 3.74), and we do not round up if doing
so would make the rounded number odd (e.g., 3.745 becomes 3.74).

Purpose of Division

In addition to rounding, division also requires some explanation. Let’s
consider the formula for the sample mean, MX = ΣXi / n, and why we
divide by n, and especially what function division serves in statistics.

Presume that we have data about the life savings of a sample of
women and a sample of men. If we were interested in the wealth of the
two groups as a whole, we could compare the sums of the savings in the
two groups. But if we are interested instead in savings from the perspective
of the individual people of both genders, we need to compare location
descriptive statistics, such as means, rather than score sums.

If the groups were not of equal size, and the sum of the savings of the
smaller group was larger than the sum of the savings of the bigger group,
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we could be unequivocally certain that the smaller group had more savings
than the larger group, even given a focus on the perspective of the individ-
ual. Of course, we still could not quantify how much more savings there
were in the more frugal group. Conversely, if the groups were not of equal
size, and the sum of the savings of the bigger group was larger than the
sum of the savings of the smaller group, we could not be certain that from
the individual perspective the bigger group had more savings than the
smaller group.

If the two groups were exactly equal in size, we could compare the
sums to make accurate judgments of wealth from both the group and the
individual perspectives. But researchers do not limit themselves to study-
ing groups that are always of equal size.

We need ways to compare data dynamics represented in descriptive
statistics that will work when group sizes are equal, but also will work
when group sizes differ. Happily, statisticians know that when we divide,
we are removing from our answer that which we are using to divide.

Most statistics formulas involve division that uses some function of n
(either n or n – 1), so that results may be compared across groups of dispa-
rate sizes. And sometimes we divide by other data characteristics, so that
these too no longer impact our answers.

Of course, some analyses focus exclusively on the data in hand, at our
fixed single sample size. For analyses of this sort, division by n (or n – 1) is
unnecessary, because the sample size is a constant for within-study charac-
terizations of data.

Outliers

The mean is fundamentally important in computing other characteriza-
tions of data in addition to location (i.e., dispersion, shape, and relation-
ship), as we shall see in succeeding chapters. However, the mean is very
sensitive to anomalous or outlying scores. And any distortions in the mean
unavoidably also impact the characterizations of data that themselves
invoke the mean as a benchmark reference point.

An outlier is a participant whose data are distinctly atypical and thus
would unduly influence characterizations of the data. Some researchers
have the misconception that outliers are evil people (or lab rats, etc.) who
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are or should be branded on their foreheads with giant, red capital letter
“O’s.”

Instead, most people are outlying in some sense on at least some vari-
ables. We are all probably really exceptionally bad, or exceptionally good,
or weird, on some things. This is part of the challenge of formulating
social science generalizations involving people with so many individual
differences. Of course, some people may be outliers on more variables
than other people.

To complicate matters, as we shall also eventually see, an outlier is not
necessarily outlying on all descriptive statistics for a given dataset. For
example, a given person may be an outlier regarding the mean, but not
regarding the median or other statistics.

Table 2.3 illustrates these dynamics. Jane is not an outlier regarding
the mean or the median on X1. However, Jane arguably is an outlier
regarding the mean of X4, even though she is not an outlier regarding the
median of X4.

The Table 2.3 data illustrate the relative sensitivities to outliers of the
mean versus the median. The mean can be very highly influenced by rela-
tively few anomalous scores in the data, even when the number of scores is
quite large.

However, the sensitivity of the mean to unusual scores does not sug-
gest that the median is always a better location statistic than the mean. In
some cases, we care more about people who are extreme (e.g., people
whose cholesterol is exceptionally high) and therefore would intentionally
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TABLE 2.3. Heuristic Data Illustrating
Impacts of Outliers on M and Mdn

Participant X1 X2 X3 X4

Robert 1 1 1 1
David 2 2 2 2
Karan 3 3 3 3
Jane 4 9 9 999

Median 2.50 2.50 2.50 2.50
Mean 2.00 3.75 26.25 251.25



select the mean as a descriptive statistic most sensitive to the most or least
worrisome scores.

When the researcher is in a quandary about which central tendency
description to use, remember that this is not necessarily an either-or
choice. It may be perfectly reasonable to report several location descriptive
statistics to more fully represent the scores, and to give readers a more
complete understanding of the data.

Another alternative is to use more sophisticated and considerably
more complex central tendency descriptive statistics. For example, the
Huber (1981) estimator can be used. Statistically, this estimator for sam-
ple data in essence focuses on the mean for the core of the data distribu-
tion and on the median for more extreme portions of the distribution
(Maxwell & Delaney, 2004).

The Huber estimator is not computed using a formula! In particularly
sophisticated statistics, sometimes no formula is present. When no for-
mula exists to derive an estimate, computationally-intensive procedures
requiring computers, called “iteration,” sometimes can still produce an
estimate. Iteration is a statistical routine in which a first guess is made,
then the guess is repeatedly tweaked using some statistical rule, until a sat-
isfactory estimate is obtained. For example, in the method called explor-
atory factor analysis, iteration is always performed as part of what is
called rotation (Thompson, 2004).

The mechanics of iteratively guessing the Huber estimator for a
dataset are beyond the scope of the present treatment. The point is that
there are a lot of descriptive statistics that can be used to characterize loca-
tion, and no single characterization is always definitively correct.

A related question is what to do with the outliers themselves. Perhaps
the better solution for dealing with outliers, rather than changing the
descriptive statistic, is to eliminate or alter the scores of outliers.

The first thing to consider when encountering outlying scores is that
data may have been incorrectly entered. Out-of-range values (e.g., an IQ
score of 900) are obvious indications of inaccurate data entry. Out-of-
range or other entry errors are simply corrected once the mistakes are
identified.

Second, further investigation may shed some light on whether plausi-
ble but unlikely scores are legitimate values. For example, perhaps a
grade-equivalent score of 7.2 by a doctoral student on a reading skills test
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is possible, but the alternative hypothesis—that the student was not work-
ing to capacity—clearly must be considered. Upon being interviewed, the
student might confess lack of motivation when taking the test. Or consul-
tation of other data for the student (e.g., a GRE verbal score of 780) might
suggest that the student simply was not trying. When external information
definitively indicates that scores are inaccurate, participants might be
retested or their scores simply may be omitted from the dataset.

Third, when scores are in some sense extreme but possible, and no
external evidence can explain the basis of the anomaly, decisions about
what to do with the outlying scores become quite difficult. In general,
omitting outliers simply because they are bothersome, without theoretical
justification, is unreasonable. As Pedhazur and Schmelkin (1991) noted,
“the onus of interpreting what the outliers and/or influential observations
mean in a set of data and the decision about what to do is, needless to say,
on the researcher” (p. 408). Researchers should avoid the temptation for
atavistic escape inherent in using arbitrary cutoffs for degrees of score
extremity as the sole basis for removing unexpected scores (Johnson,
1985).

One prudent choice may be to report results for analyses both with
and without the outliers with plausible scores for whom the basis for score
extremity cannot be discerned. If the interpretations are reasonably invari-
ant (i.e., similar) across analyses, the researcher is assured that conclusions
are not artifacts of analytic strategies.

��� Four Criteria for Evaluating Statistics

As suggested by the previous discussion, no statistic provides a perfect
characterization of sample scores under all circumstances. But method-
ologists have elaborated four criteria to guide evaluations of how well sta-
tistics work.

Sufficiency refers to whether a statistic makes use of all the data in the
sample. For example, the mode is not a sufficient statistic, except in very
small samples (i.e., n = 2) or when the scores delineate a constant rather
than a variable. The median and the mean, on the other hand, are suffi-
cient statistics.
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Unbiasedness refers to the capacity of repeated samples invoking a
statistic to yield accurate estimates of corresponding parameters. For
example, M is an unbiased estimate of µ. If we draw infinitely many ran-
dom samples, each of a given size (e.g., n = 50) from a population, and
average the sample Ms, that average will equal µ.

Efficiency refers to how tightly statistics used to estimate parameters
cluster around the actual parameters. For example, if we are attempting to
characterize the parameter central tendency, we prefer estimates using a
given sample size that fluctuate less across samples from a given popula-
tion than do other plausible estimates.

Robustness refers to the capacity of a statistic to be less influenced by
outlying scores. For example, as noted previously, although the mean is a
sufficient, unbiased, and relatively efficient statistic, the mean is more
influenced by outliers than is the median.

��� Two Robust Location Statistics

Statisticians have long been concerned about how to improve character-
izations of data containing outliers. For example, in a short, accessible
article, Wilcox (1998) argued that a good deal of educational and psycho-
logical research probably has reached erroneous conclusions based on
overreliance on classical statistics such as the mean.

Robust statistics are variations on older classical estimates (e.g., MX,
MdnX) for location and other data descriptions that seek to minimize the
influences of outliers. Wilcox (1997) published a book on robust statistics
alternatives. Also see Keselman, Kowalchuk, and Lix (1998) and
Keselman, Lix, and Kowalchuk (1998). Table 2.4 presents a heuristic
dataset that can be used to illustrate two alternative “robust” location
descriptive statistics that can be employed to mitigate the disproportionate
influences of extreme scores.

One robust method “winsorizes” (à la statistician Charles Winsor) the
score distribution by substituting less extreme values in the distribution
for more extreme values. For example, in a set of 20 skewed scores, the
fourth score (e.g., 433) may be substituted for scores 1 through 3, and in
the other tail the seventeenth score (e.g., 560) may be substituted for
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scores 18 through 20. The mean of this winsorized distribution (e.g., MX′ =
480.10) thus becomes less extreme than the original value (e.g., MX =
500.00).

Another robust alternative “trims” the more extreme scores and then
computes a “trimmed” mean. In this example, 0.15 of the distribution is
trimmed from each tail. The resulting mean (e.g., MX = 473.07) is thereby
closer to the median of the original distribution, which has remained
461.00.

In a sense, as pointed out by Lunneborg (1999), the median can itself
be thought of as a trimmed mean (i.e., a mean based on trimming essen-
tially 50% of the scores from both tails). In theory, robust statistics may
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TABLE 2.4. Two Illustrative “Robust” Location Descriptive Statistics

ID X X′ X

1 430 433 —
2 431 433 —
3 432 433 —
4 433 433 433
5 435 435 435
6 438 438 438
7 442 442 442
8 446 446 446
9 451 451 451

10 457 457 457
11 465 465 465
12 474 474 474
13 484 484 484
14 496 496 496
15 512 512 512
16 530 530 530
17 560 560 560
18 595 560 —
19 649 560 —
20 840 560 —

M 500.00 480.10a 473.07b

Mdn 461.00 461.00 461.00

aThe arithmetic average of the third column, containing one version of altered data, is the
winsorized mean.
bThe arithmetic average of the fourth column, containing data omitting 0.15 (or 15%) of the
scores in both extremes of the distribution (n = 20 – 3 – 3 = 14), is the trimmed mean.



generate more replicable characterizations of data, because at least in
some respects the influence of more extreme scores, which given their
atypicality may be less likely to be drawn in future samples, has been mini-
mized.

However, robust statistics have not been widely employed in contem-
porary research. Perhaps scholars who are not methodologists have diffi-
culty keeping up with the burgeoning literatures in their own disciplines,
much less the burgeoning methodology literature. Or some researchers
may hesitate to report methods not already routinely presented in jour-
nals, for fear that if they violate normative expectations for scholarly
behavior their work may be less likely to be published.

Some Key Concepts

All location or central tendency statistics, to be reasonable, must fall
within the score distribution and ideally, in one sense or another,
should fall near the center of the distribution. Location statistics can
be very useful in understanding and explaining the story underlying
our data.

However, too often researchers focus solely on location statistics,
and especially the mean. And, as we shall see in our Chapter 4 treat-
ment of shape statistics, the median is too infrequently considered. As
Grissom and Kim (2005) noted, sometimes a “sample’s [emphasis
added] median can provide a more accurate estimate of the mean of
the population [emphasis added] than does the mean of that sample”
(p. 40).

��� Reflection Problems ���

1. Consider the scores {1”, 1”, 2”, 3”, 8”}. Determine the mean and the

median. Because these data are intervally-scaled, the differences of scores

from both the mean and the median are meaningful. Compute (a) the dif-

ference, (b) the absolute difference, and (c) the squared difference of

each score from the median. Then sum up each set of three numbers.

Then compute (a) the difference, (b) the absolute difference, and (c)

the squared difference of each score from the mean. Then sum up each

set of three numbers.
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What are the sums of the difference scores from the mean, and from

the median? Which descriptive statistic, mean or median, has the smallest

sum of the absolute difference scores? Which descriptive statistic, mean

or median, has the smallest sum of the squared difference scores?

2. Researchers not infrequently encounter missing data (e.g., some students

skip certain test questions, or some participants were absent when a

given test was administered). Even though there are better ways to deal

with missing data (Little & Rubin, 1987), sometimes researchers substi-

tute the mean of the nonmissing scores on a variable for the missing data

on a given variable. What effect does using this mean imputation for

missing data have on the means computed both before and after the sub-

stitution is performed?

Imputation of missing data can be particularly problematic when the

data are not missing at random. A classic example involves statistician

Abraham Wald’s work on aircraft survivability in World War II (Mangel &

Samaniego, 1984). Researchers counted the bullet and shrapnel injuries

in various locations on returning aircraft. Might a focus on reinforcing the

locations on returning aircraft receiving the most hits have been less pro-

ductive than focusing on the locations receiving the most hits on the

planes that did not return? Of course, damage data for nonreturning

planes was not available to the analysts, and Wald was merely emphasiz-

ing that the researchers really did not have access to the data they most

needed, and should have been more cautious in using the data that were

available!

3. For two independent and equally critical reasons, the influences of addi-

tive and multiplicative constants on statistics ought to be understood.

First, to understand various statistics (e.g., medians, means), we must

know what causes or affects them, and what does not. Second, through-

out statistics, as we shall see in subsequent chapters, additive and/or

multiplicative constants are used. To understand the results invoking

these constants, we must understand the impacts of additive and multipli-

cative constants.
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Consider the following data:

Y X1 X2 X3

Jane 1 1 0 6

Douglas 2 2 0 1

Jim 3 3 0 1

Mike 4 4 4 1

Compute the mean of each variable. Then apply the following con-

stants to X1, X2, and X3, and next compute the means of the various

new versions of the three variables:

a. Add 3 to each score.

b. Add –1 to each score.

c. Multiply each score by 2.

d. Multiply each score by –0.5.

e. First add –1 to each score; then multiply each result by 2.

For each original and revised version of a given variable, plot the origi-

nal values of a given variable in a histogram in blue or black pen, and plot

the revised values of a given variable in a histogram in red or green pen.

How do the distributions move as constants are applied? How does the

mean move in relation to its score distribution?

What rule can we formulate to express the effects on means of addi-

tive constants (e.g., “New mean always equals original mean . . .”)? What

rule can we formulate to express the effects on means of multiplicative

constants (e.g., “New mean always equals original mean . . .”)? Why

mathematically do these rules work? When will a multiplicative constant

not change the value of the original mean?
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3

Dispersion

D
ispersion or “spreadoutness” statistics quantify the answer to the
question, “How dissimilar (or similar) are the scores to each
other?” Dispersion statistics can be used for two purposes: (a) to
characterize how well location descriptive statistics perform at

representing all the data, and (b) to characterize score “spreadoutness” as
an important result in its own right.

Of course, the dispersion question only makes sense in the presence of
data that are at least intervally-scaled. With nominal or ordinal data, all we
can do is compute the proportion 0.0 to 1.0 (or the percentages 0% to
100%) of scores within the modal score category. This is a crude dispersion
characterization, but does not quantify how much the scores differ. But for
nominal or ordinal data, how could we quantify how distant scores are from
each other, or from some benchmark, if the scores have no meaningful,
nonarbitrary information about distance on a “ruler” that is at least
intervally-scaled?
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��� Quality of Location Descriptive Statistics

Recognizing that location descriptions may differ in their quality, and even
have no value for some data, is a fundamentally important understanding.
For example, presume that you and your significant other are sitting under
a tree on a university park bench. Lo and behold, along comes Bill Gates,
the chairperson of Microsoft Corporation.

The accumulated savings of the three of you in dollars could be mea-
sured, and the data would be intervally-scaled. Thus, the mean could be
computed. But would the resulting one number fairly represent all, or even
any, of the three scores? Mr. Gates might be perturbed that the mean woe-
fully underrepresented his net worth. And you might be depressed to real-
ize that the mean of the group was (presumably) so far above your own
life savings.

As noted in Chapter 2, all the central tendency statistics work per-
fectly well for data that have zero dispersion. But location descriptions
work less well as scores become increasingly dissimilar from each other.
And at some degree of dispersion, the concept of central tendency becomes
senseless. The big picture becomes only the score spread, and not the use
of one number to represent all the scores.

But for other data for which central tendency is sensible and that are
at least intervally-scaled, dispersion statistics are essential quantifications
of the quality of location descriptions. The important implication is:
Never report a central tendency statistic (e.g., MX) without reporting (usu-
ally in parentheses) right next to the location description a dispersion
description.

��� Important in Its Own Right

Dispersion statistics can also be important in their own right. In such
cases, these dispersion characterizations might be presented without even
reporting central tendency descriptions.

Consider the results below for 10 first graders coincidentally all
named after deceased former U.S. presidents. The students were ran-
domly assigned to one of two methods of teaching spelling. Prior to
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intervention, the students completed a pretest on which the number of
correctly-spelled words was recorded. After instruction, the students
again completed a brief posttest measuring the number of correctly-
spelled words.

Group / first grader Pretest Posttest

Control
M. Fillmore 1 1
R. Hayes 2 2
C. Coolidge 3 3
H. Hoover 4 4
R. Nixon 5 5

M 3.0 3.0

Experimental
G. Washington 1 0
T. Jefferson 2 0
A. Jackson 3 3
A. Lincoln 4 6
F. Roosevelt 5 6

M 3.0 3.0

The means for these data suggest that the process of randomly assign-
ing participants to groups effectively created groups that were equivalent
at the start of the intervention, reflected in part by the fact that both pre-
test means equaled “3.0 correct answers.” That is the good news. The bad
news is that the two posttest means suggest that the interventions were
equally (in)effective.

However, upon closer scrutiny, the data do suggest intervention
effects, albeit not on average achievement. Here the new, experimental
teaching method caused student achievement to become increasingly dis-
persed. Clearly, understanding intervention effects requires more than
looking only at group means.

The outcomes for these data (no mean change, but increased achieve-
ment variability) are obvious given that the dataset in the example is ridic-
ulously small. This sort of impact might have been obscured in a large
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dataset, and might have gone completely unnoticed by researchers who
sadly have “obsession with only means” personality disorder.

The pattern here of no growth during educational intervention is not
typical. But the pattern of interventions impacting score spread is reason-
ably common. Indeed, educational interventions frequently yield “fan”
spreads reflecting differential impacts for students starting at different lev-
els. Figure 3.1 illustrates such a “fan” effect for the five participants in the
intervention group whose scores became more dispersed following the
intervention.

Less able students over the course of intervention may stay about the
same or only slightly improve. More able students may not only improve,
but may even improve more dramatically than their less able counterparts.
This dynamic reflects the fact that pretest achievement scores involve esti-
mated abilities at a given point in time, but may involve as well differential
rates of learning.

The challenge in many educational interventions is not only to help
students learn, but also to impact rates of learning. The take-home mes-
sage is to remember that means only characterize one aspect of data, and
that other characterizations of data dynamics may also be important, or
may even be more or most important.
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��� Measures of Score Spread

Expectations for Dispersion Statistics

The least “spreadout” that scores could be would occur if all the scores
were identical, regardless of what the identical scores were. In this case,
the scores would have exactly zero spread. We expect statistics describing
score variability or dispersion to all yield numerical answers of exactly
zero (i.e., 0.00) when the scores have no spreadoutness.

A negative numerical answer for any statistic describing dispersion
would assert that “the scores are less ‘spreadout’ than the scores would be
if the scores were all identical.” This does not seem plausible!

When any two scores differ from each other, we expect dispersion
descriptive statistics to be greater than zero. As scores are increasingly
more dissimilar to each other, we also expect statistics describing score
variability to increase in value.

Logically, because scores can take on infinitely many different values,
the scores can also be infinitely dispersed from each other. Therefore,
there is no universal mathematical limit on the upper-bound or maximum
values of descriptive statistics for dispersion.

Range

The simplest descriptive statistic that characterizes score dispersion is the
range. The range is the largest score minus the smallest score. We cannot
compute the range for nominal data, because the scores of the variable’s
categories have no meaningful order, so there is no highest or lowest. We
cannot compute the range for ordinal data, because addition or subtrac-
tion is not reasonable unless the scores are intervally-scaled.

The range has the expected feature that we obtain zero if all the scores
are identical, in which case we subtract any one person’s score from any
one other person’s score to compute the range. The range is nonzero if any
two people have different scores, as reasonably expected of all dispersion
statistics.

The range, like all the location descriptive statistics, is in the score
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world. So, if the scores are {$1.00, $3.00, and $5.00}, the mean is not 3.0,
but $3.00. Similarly, the range would be $4.00.

The range has the disadvantage that only two scores are considered in
its computation. This means that different datasets, each involving differ-
ent score variabilities, may nevertheless have the same range. For example,
the following three datasets (years 2006, 2008, and 2010) all have a range
of $2M, even though the datasets differ in spreadoutness, going from least
dispersion in the 2006 data to the most dispersion in 2010.

Person 2006 2008 2010

George $2M $2.0M $2M
Wenona $0 $1.5M $2M
Steve $0 $1.0M $2M
Patty $0 $1.0M $0
Judy $0 $0.5M $0
Sheri $0 $0 $0

Of course, the insensitivity of the range to all but two scores is com-
pletely irrelevant at every sample size, if the scores are a constant, and so
the range equals zero. So, for example, at n = 1,000,000, for range = 0.0,
this descriptive statistic does a perfect job of characterizing the dispersion
of all 1,000,000 scores.

However, for scores that constitute a variable, the range is less and
less satisfactory as n increases, because more and more scores are ignored,
or because data with different dispersions can have the same ranges. We
need a dispersion descriptive statistic that considers every score and yields
a different result for datasets with different “spreadoutness.”

Sum of Squares

If we wish to compare each score with every other score, there would be
[n(n – 1)] / 2 pairwise comparisons. For example, for the previous data,
involving the scores of six people, there are [6(6 – 1)] / 2 = [6(5)] / 2 = 30 / 2
= 15 unique comparisons. As a starting point, we could compute how far
every score deviated from George’s score, and then add up or average the
“George deviations.”

Which person we use as the benchmark score makes no difference. If
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all the scores are the same, the sum of the “George deviations” or the
“Wenona deviations” or any of these deviations will be zero, and the aver-
age of these will then also be zero. Alternatively, we could use any number
(e.g., 0.0) as the comparative benchmark, even a number outside the score
range.

However, as noted in Chapter 2, the mean has some very special prop-
erties. For example, M is “in the center” of the scores, even in the sense
that physical weights balance on a fulcrum positioned at M. These proper-
ties of the mean make the mean particularly desirable as our benchmark
from which we may measure dispersion for each score.

One candidate for a descriptive dispersion statistic is the sum of the
individual deviation scores from the mean, where each xi = Xi – MX. The
Σxi = 0.0 when the data constitute a constant, which is desirable. The sum
of the deviation scores also has the desirable feature of considering each
and every score. However, the sum of the deviation scores would be a
completely unsatisfactory measure of score dispersion, because Σxi is
always zero, even for variables, as emphasized in Chapter 2.

One alternative would be to compute the sum of the absolute devia-
tions from the mean or some function of this sum, such as the mean abso-
lute deviation (i.e., MADX = Σ|xi| / n). For example, for the scores {$1, $3,
and $5}, the sum of the absolute deviations is |–$2| + |$0| + |$2| = $2 + $0
+ $2 = $4. And MADX = $4 / 3 = $1.33. This description of dispersion is
not unreasonable, but the description is rarely used because this character-
ization lacks a statistical “theoretical undergirding,” and “the mathemati-
cal statistician finds the process of ‘taking absolute values’ presents special
difficulties for certain mathematical derivations” (Glass & Stanley, 1970,
p. 86).

Another alternative is to square the deviation scores, and then sum the
squared deviations. Doing so yields the sum of squares (SOSX). For exam-
ple, the SOS of the following three IQ scores is 200.0:

Person Xi – X = xi xi
2

Geri 125 – 135 = –10 100
Murray 145 – 135 = 10 100
Wendy 135 – 135 = 0 0

Σxi 0
SOSX 200
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Thus, the formula for the SOSX can be expressed as

SOSX = Σ(Xi – X)2 (3.1)

or equivalently as

SOSX = Σ xi
2 (3.2)

An algebraically equivalent formula uses the original scores (or “raw
scores”) rather than the mean and the deviation scores:

SOSX = ΣXi
2 – [(ΣXi)2 / n] (3.3)

For our data we have [1252 + 1452 + 1352] – [(4052) / 3] = [15625 + 21025
+ 18225] – [164025 / 3] = 54875 – 54675 = 200. The “raw score” for-
mula is computationally easier. However, computational ease of use was
more relevant when statistics were computed on hand-cranked calcula-
tors. And the raw score formula has the very serious heuristic downside
that the formula completely obscures (a) the underlying nature of SOS and
(b) the role of the mean in computing several dispersion statistics.

The sum of squares cannot be negative, because of the squaring opera-
tion. The SOS will be zero iff (if and only if) the scores constitute a con-
stant. The SOS will be nonzero for all variables and, for a fixed n, will
become larger as scores become more dissimilar from each other. Concep-
tually, the SOS is information about both the amount and the origins of
individual differences.

The social sciences presume that people differ as individuals. These
individual differences create challenges in formulating theoretical general-
izations, and may make universal statements impossible. Even medicines
do not work equally well in different people! But these individual differ-
ences are exactly the focus of scholars in the social sciences. Thus, our def-
inition of the SOS makes the SOS sound critically important in
quantitative research in the social sciences, because the SOS indeed is criti-
cally important in quantitative research.

As we shall see, the SOS has some limitations as a descriptive statistic.
However, the SOS is used ubiquitously in various other statistical analy-
ses, as will be illustrated over and over again in later chapters.
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The SOS in this case quantifies the amount of information we have in
our data as “200.0 squared IQ points.” In general, we prefer more rather
than less information (i.e., variability) about the variables of interest to us.
If we are investigating childhood depression, and the SOS of the depres-
sion scores of our study participants is zero, we will have considerable dif-
ficulty (actually, an impossibility) in understanding the nature and causes
of depression.

But a nonzero SOS can also be used to explore the origins of our
information about individual differences. First, we can partition the SOS
information based on the degree to which the scores are reliable, and the
degree to which the information is unreliable. This is a measurement study
application that focuses on score psychometric integrity, and is beyond the
scope of the present treatment, but the interested reader is directed to
Dawson (1999) or Thompson (2003).

Second, we can perform a “who” partition of our information.
Because each person’s contribution to our information is unique, nonover-
lapping, or uncorrelated, xi

2 for a given person quantifies how much infor-
mation a given study participant contributed to the dataset. We can even
secure graph paper and draw a Venn diagram, portraying the information
by using different color pens for each participant.

In the present example, we will draw in red a rectangle or square con-
taining 100 graph paper boxes to represent Geri’s contribution. We can
draw a contiguous rectangle or square in blue to represent Murray’s con-
tribution of 100 area world units of information. We can draw Wendy’s
contribution in chartreuse, but here there will be no problem if we do not
have this color of pen, because Wendy contributed no information about
individual differences on this particular variable. Persons scoring at the
mean never contribute any information about individual differences, at
least on this given variable.

Third, we can perform a substantive partition to explore how our 200
squared units of information originated, or how well other variables might
predict or explain our information. Substantive partitioning applications
are the focus of the “Bivariate Relationships” chapter in this book and of
all subsequent chapters.

The mean of our three IQ scores is “135 IQ points.” However, the
sum of squares is not “200.0 IQ points.” Instead, the SOSX is “200.0
squared IQ points.” In other words, although the three scores and the cen-
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tral tendency descriptive statistics for the scores are all in the “score”
world, the sum of squares is the first statistic we have encountered that is
in the squared or “area” world.

��� Variance

The SOS meets many of our expectations for a dispersion descriptive sta-
tistic and has many, many uses in applications that are not descriptive
(e.g., that are explanatory or substantive). The SOS is quite useful in
quantifying how much information we have on a given variable in a study
with a fixed number of participants to the extent that we focus only on a
given dataset.

However, problems may arise if we wish to compare score spread
across subgroups within our study, or if we wish to compare dispersion of
scores in our study with score dispersion in some other study. We can
compare score spreads apples-to-apples using SOS if the scores in the
groups are all constants, and the sums of squares are all zero.

But if the scores create a variable (SOS > 0.0), there may be difficul-
ties. If two groups (or subgroups) of scores involve exactly the same num-
ber of participants, we can (a) make definitive statements about which set
of scores is more dispersed and (b) quantify in squared information units
how different dispersion is by subtracting the smaller SOS from the larger
SOS.

If two groups have different numbers of participants, and the SOS in
the smaller group is larger than the SOS in the larger group, we can be cer-
tain that the scores are more dispersed in the smaller group than in the
larger group. However, we cannot quantify the amount of differential
score dispersion on the average by subtracting the sums of squares one
from the other, because this computation would not recognize the differ-
ence in the group sizes.

Things are particularly problematic if the SOS for the variable in the
larger group is larger than the SOS in the smaller group. Now we cannot
determine whether the larger group’s SOS is due to (a) cumulating squared
deviation scores over more participants, (b) greater average dispersion in
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the larger group, or (c) both these factors. Nor can we quantify the
amounts of differential average score spreads in the two groups.

As explained in Chapter 2, these problems can be overcome by remov-
ing the influence of group size from our descriptive statistic via division.
At first impression, the solution seems very straightforward: Divide by n
for samples, and N for populations. Unfortunately, the correct solution is
a bit more complex.

Dividing the SOS by a function of the number of participants yields an
area-world descriptive statistic, the variance. The parameter symbol for
the population variance is σ2

X. The statistic symbol for the sample vari-
ance is VarX (or SD2

X, for reasons that will become clear in the next sec-
tion).

However, it turns out that we must use different divisors, depending
on whether our data constitute a population or a sample. For the parame-
ter, we use the formula

σ2
X = SOSX / N (3.4)

For the statistic, we use

VarX = SD2
X = SOSX / (n – 1) (3.5)

Obviously, the variance cannot be computed for sample data with n = 1,
because division by n – 1 = 0 is impermissible, but dispersion is a moot
point of little or no interest when n equals 1 anyway.

Note that dividing by n – 1 rather than by n for sample data will
always result in a larger answer, iff SOS ≠ 0. The difference in our result
from dividing by n – 1 versus n (iff SOS ≠ 0) is fairly dramatic when n is
small (e.g., when n is 2 or 3). How much larger our answer will be, how-
ever, iff SOS ≠ 0, differs for every value of n. This dynamic is illustrated by
the following list of potential values for n:

n n – 1 Difference

2 1 50.00%
3 2 33.33%
4 3 25.00%
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5 4 20.00%
6 5 16.66%
7 6 14.28%
8 7 12.50%
9 8 11.11%

10 9 10.00%
100 99 1.00%

1,000 999 0.10%
1,000,000 999,999 0.0001%

Division by n – 1 rather than by n is a correction for statistical bias
that would otherwise occur in our answer. Problems of systematic bias in
research present no difficulty as long as we (a) recognize that bias is pres-
ent and (b) know the appropriate correction factor.

For example, people may have a tendency to either lie or uncon-
sciously exaggerate how much money they earn, how often they go to
church, or how often they have sex. When we are conducting door-to-
door surveys, if we know the correction factor is to divide by 2, there is
simply no point in confronting the study participant for being dishonest
when we knock on the door, and pose our research question, and they
respond “eight times per week.” We simply record 4.0 on our data collec-
tion form and move on to the next house, hoping that we will not get
punched in the nose for asking intensely personal questions.

Similarly, statistical bias in estimating score dispersion in sample data
is not problematic as long as we know the “fix.” When we are characteriz-
ing score dispersion in the sample, we are using the statistic as an estimate
of the population dispersion. Samples always imply ultimate interest in the
population. Otherwise, we would instead call the data the population, and
use Equation 3.1. But why do sample data tend to underrepresent the
score dispersion present in the population, when we are drawing strictly
random samples from the population?

The tendency of sample data to underrepresent score dispersion in the
population is actually conditional on the shape of the population data, a
topic covered in more depth in Chapter 4. However, for now, let us
assume that the population consists of the nine scores portrayed in the Fig-
ure 3.2 histogram of the Table 3.1 data.

On each successive selection from the population when creating the
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sample, each person’s probability of being drawn is exactly equal, by defi-
nition of what simple random sampling means. For example, the probabil-
ity of drawing Molly first is 1 / 9, the probability of drawing Geri is 1 / 9,
and the probability of drawing Wendy is 1 / 9. After the first draw, on the
second draw, every person’s probability of being selected is now exactly
1 / 8.

But (and this is a very big “but”), the probability of drawing each of
the five scores is not equal. The probability of drawing scores 1 or 5 is
1 / 9 each. But the probability of drawing scores 2 or 4 is instead 2 / 9
each. And the probability of drawing score 3 is 3 / 9, or 1 / 3.

This means that random samples from populations such as that por-
trayed in Figure 3.2 tend to overrepresent scores in the middle, and
underrepresent scores in the two extremes. Consequently, scores in ran-
dom samples for populations like this one tend to be less dispersed than
the populations from which the samples are drawn! This is the dynamic
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TABLE 3.1. Population Scores (N = 9)

Person X

Molly 1
Geri 2
Murray 2
Peggy 3
Carol 3
Anne 3
Donna 4
Deborah 4
Wendy 5

FIGURE 3.2. Histogram for a population consisting of nine scores



for which we are correcting for bias by dividing by n – 1 rather than by n
when we have sample data.

Standard Deviation

The variance meets our expectations for describing score spread. The vari-
ance (like every other dispersion statistic) can be no less than zero and is
zero iff the scores are a constant. The variance gets larger as scores become
more dissimilar to each other (or differ more from a score benchmark, the
mean). And the variance can be used to compare score dispersion across
groups of unequal sizes, even when the scores are not a constant.

Of course, the variance is in a squared metric (e.g., “580 squared
pesos,” “76 squared pounds,” “350 squared IQ points”). Mathematically,
this poses no difficulty. However, most of us are more comfortable work-
ing in the unsquared metric of the score world. For example, if we ask a
store clerk whether 100 squared dollars is sufficient to pay for our pur-
chase, the clerk may look at us quizzically, and we may even be arrested.

Taking the square root of the variance puts our descriptive statistic
back in the score world, and in the metric of the original score. The square
root of the variance is the standard deviation (i.e., σX for the parameter,
and SDX for the statistic). The parameter formula is

σX = SQRT[σ2
X] = [SOSX / N]0.5 (3.6)

Note that raising a value to the exponential power of 0.5 is equivalent to
taking the square root of the value. The statistic formula is

SDX = SQRT[VarX] = [SOSX / (n – 1)]0.5 (3.7)

Thus, if the scores are measured in the units of number of correct test
answers, and the variance is “4.0 squared correct answers,” the standard
deviation would be “2.0 correct answers.”

We have noted previously that the mean has some special features as a
measure of central tendency, including the fact that Σxi = 0.0. The mean is
used as the benchmark from which we quantify degree of score dispersion.
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We initially invoke a squaring function to quantify score spread from the
mean. Consequently, the standard deviation is sometimes called the “first
moment about the mean.” Other descriptive statistics also use the mean as
the benchmark from which to quantify deviations, but use higher-order
exponential powers of the deviations (i.e., 3 and 4), thereby defining the
second and third moments about the mean. These two additional statistics
are presented in Chapter 4.

��� Situation-Specific Maximum Dispersion

Deep understanding of statistical characterizations of data requires insight
into what expectations ought apply to different results, and what universal
limits (e.g., minimum possible results) apply for various descriptive statis-
tics. Understanding also requires knowledge of situation-specific mathe-
matical restrictions on possible results.

For example, dispersion descriptive statistics have a universal mathe-
matical lower-bound limit. Dispersion statistics cannot be less than zero,
and will be zero only for data that constitute a constant.

Dispersion statistics have no universal mathematical upper-bound
limit. For example, SOS can equal 1,000,000,000, and SD can equal
1 × 1027. But dispersion statistics do have an upper-bound mathematical
limit if we constrain the description as regards (a) how many participants
there are, and (b) what the lowest and highest scores are.

Scores are most dispersed when half the scores are at one extreme, and
half the scores are at the other extreme. For example, if we constrain the
scores of six participants to be numbers 1.0 through 5.0, at maximum
score dispersion (i.e., three scores of 1.0 and three scores of 5.0) the mean
will equal

[(n1 * XMIN) + (n2 * XMAX)] / n (3.8)
[(3 * 1.0) + (3 * 5.0)] / 6

[3 + 15] / 6
18 / 6
3.000
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where, for an even number of scores, n1 = n2 = n / 2, and for an odd num-
ber of scores, n1 = n / 2 + 0.5, and n2 = n / 2 – 0.5; XMIN is the lowest possi-
ble score; and XMAX is the highest possible score.

The maximum situation-specific SOS will equal

[n1 * ((XMIN – MX)2)] + [n2 * ((XMAX – MX)2)] (3.9)
[3 * ((1.0 – 3.000)2)] + [3 * ((5.0 – 3.000)2)]

[3 * (–2.002)] + [3 * (2.002)]
[3 * 4.000] + [3 * 4.000]

12.000 + 12.000
24.000

The maximum variance equals SOSX / (n – 1) = 24.000 / (6 – 1) = 24.000 / 5
= 4.800. The maximum SDX = VarX

0.5 = 4.8000.5 = 2.191.
If we change the previous example for the case in which n = 7, the

mean under the condition of maximum score dispersion will equal

[(n1 * XMIN) + (n2 * XMAX)] / n
[(4 * 1.0) + (3 * 5.0)] / 7

[4 + 15] / 7
19 / 7
2.714

Thus SOSMAX would equal

[n1 * ((XMIN – MX)2)] + [n2 * ((XMAX – MX)2)]
[4 * ((1.0 – 2.714)2)] + [3 * ((5.0 – 2.714)2)]

[4 * (–1.7142)] + [3 * (2.2862)]
[4 * 2.939] + [3 * 5.224]

11.76 + 15.67
27.429

The maximum variance equals 4.571 (i.e., 27.429 / 6) and the maximum
SD equals 2.138 (i.e., 4.5710.5). Note that the same results will be obtained
if we instead perform the calculations with n1 = 3 and n2 = 4.
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��� Robust Dispersion Descriptive Statistics

In Chapter 2 it was emphasized that outliers have more effect on the mean
than on the median. Also, some robust central tendency descriptive statis-
tics were presented.

Outliers also impact dispersion descriptions. Indeed, because the SD is
the first moment about the mean, and the calculation of SD invokes the
squaring of deviation scores, outliers have a disproportionately greater
impact on dispersion than on central tendency statistics. And the effects of
outliers on higher-order moments are even more pronounced.

Consider the following data, a count of how many recipes chefs will
present during a selected cooking lecture:

Chef Recipes – MX = xi xi
2

Emeril 1 – 2.00 = –1 1
Flay 2 – 2.00 = 0 0
Mario 2 – 2.00 = 0 0
Stewart 3 – 2.00 = 1 1

M 2.00
SOS 2.00
Var 0.67
SD 0.82

Assume that Chef J. Child is then added to the dataset:

Chef Recipes – MX = xi xi
2

Emeril 1 – 3.40 = –2.4 5.76
Flay 2 – 3.40 = –1.4 1.96
Mario 2 – 3.40 = –1.4 1.96
Stewart 3 – 3.40 = –0.4 0.16
J. Child 9 – 3.40 = 5.6 31.36

M 3.40
SOS 35.44
Var 11.81
SD 3.44
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Chef Child’s score is somewhat anomalous for this dataset. Her score
does pull the mean up from the original value of “2.00 recipes” to the new
value of “3.40 recipes.” However, her score has an even more dramatic
effect on the SD, which goes from the original value of “0.82 recipes” to
the new value of “3.44 recipes.”

One way to create a more robust description of dispersion is to trim
extreme scores out of the dataset, as was done in the case of some robust
central tendency statistics. A popular trimmed dispersion statistic trims
25% of the scores at both distribution ends and then computes the
trimmed range.

This interquartile range (IQR) can be computed by first invoking
Equation 2.1; for values of q = 0.25 and q = 0.75, respectively, compute
the 25th score percentile (i.e., P25, or first quartile [Q1], the score below
which 25% of the scores lie) and the 75th score percentile (i.e., P75, or
third quartile [Q3],the score below which 75% of the scores lie). Then the
interquartile range is computed as P75 – P25. The IQR can be painlessly
obtained using statistical software (e.g., the EXAMINE procedure in SPSS).

��� Standardized Score World

I have indicated that all statistics are either in the score world or the area
world and that the statistics in these two worlds have different uses. We
will see that there are result comparisons that we can make in one world
but not in the other. Also, some analyses are conducted in the score world,
but other analyses must be performed in the area world.

However, one world is not inherently superior to the other. We can
always beam across the barrier between the worlds by either squaring or
by taking the square root. The worlds are just different, and are used for
different purposes.

It is now time to complicate matters by subdividing the score world
into two parts: (a) the unstandardized score world, which is what we have
actually been considering until now, and (b) the standardized score world.

Scores (and descriptive statistics) in the unstandardized score world
are in the same metric as the original scores (e.g., pounds, inches, number
of right answers). But scores in the standardized score world are metric-
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free. These scores have no measurement metric, except standard deviation
units, because the original metric has been removed from the scores via
division.

The most commonly-used standard score is the z score. These scores
can be easily obtained in SPSS by using the SAVE option within the
DESCRIPTIVES procedure. The z scores actually are both standardized,
because the original metric has been removed by division, and centered,
because the original mean has also been converted to zero. The formula
for converting a given person’s Xi score into an equivalent zi score is

zi = (Xi – MX) / SDX (3.10)

For example, if Carol scored 87 right answers, and the dataset mean was
68.9 right answers, and the SD was 8.5 right answers, Carol’s z score
would be [(87 – 68.9) / 8.5] = 18.1 / 8.5 = 2.13 (not 2.13 right answers).

Standardized scores are not naturally occurring. But scores can always
be converted into z scores as long as the SD is greater than zero. If the
scores were a constant, division by zero to create the z scores would be an
impermissible operation.

Any set of scores that have (a) a mean (and a sum) of zero, and (b) an
SD of 1.0 (and a variance of 1.0) are z scores. We use the lowercase, italic
letter z to symbolize z scores because z scores are by definition always in a
deviation score metric. That is, Carol’s z score of 2.13 tells us that her
score is 2.13 standard deviations from the mean. Because her z score is
positive, we know that specifically her score was 2.13 standard deviations
above the mean.

These z scores are used for various purposes. First, some statistical
computations are simplified if the data are both standardized and centered
prior to conducting remaining calculations. This was particularly relevant
when calculations were performed by hand and the computations for a
given dataset were performed repeatedly as a check against human error.
But even modern software still invokes this standardization for some anal-
yses to expedite calculation speed.

Second, standardization is sometimes done as a first step in integrating
results across studies so that results can be compared apples-to-apples. For
example, if I give three 100-item tests in a doctoral class, Colleen might
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score X1 = 77 right answers, X2 = 84 right answers, and X3 = 90 right
answers.

I might either compute an average test score for each student, includ-
ing Colleen (MCOLLEEN = 83.67 right answers), or alternatively add up the
number of right answers for each student (ΣCOLLEEN = 251) and then assign
letter grades. But if M1 = 87.0, SD1 = 5.0; if M2 = 90.0, SD2 = 3.0; and if
M3 = 94.0, SD3 = 2.0; these two strategies do not take into account that
Colleen did better on tests that were progressively more easy and on which
scores were progressively less dispersed.

Consider Mary, whose scores were 90 right answers, 84 right
answers, and 77 right answers, respectively. Mary’s total (i.e., 251) and
mean number of right answers (i.e., 83.67) are the same as Colleen’s mean
and total. Do the z scores of these two individuals also suggest that both
people performed equally well across the semester? Colleen’s z scores of
–2.00, –2.00, and –2.00 average to –2.00. Mary’s z scores of 0.60, –2.00,
and –8.50, respectively, average to –3.30. Which comparison affords an
apples-to-apples-to-apples view of the data, controlling for test difficulty
and score dispersion, and which does not?

Third, z scores are computed in the essential, initial step of converting
observed scores into other standardized metrics, such as IQ scores
(M = 100.0; SD = 15.0) or SAT/GRE scores (M = 500.0; SD = 100.0).
These are not naturally occurring scores either. But standardized scores of
this sort become so familiar that there is no need to communicate to
friends or family the relevant Ms or SDs. One need only say, “I have an IQ
of 130.0.”

Some Key Concepts

Dispersion statistics quantify how similar or dissimilar the scores are
to each other, or to a benchmark (e.g., the mean). Because central ten-
dency statistics more accurately represent all the scores as dispersion
is smaller, dispersion statistics (e.g., the SD) characterize how well
central tendency statistics do at representing the data. Therefore,
always report the SD whenever reporting the mean.

And as Grissom and Kim (2005) perceptively noted,

Because treatment may affect the variabilities as well as
the centers of distributions, and because changes in the
variances can be of as much practical significance as are
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changes in means, researchers should think of variances
not just with regard to whether their data satisfy . . . [sta-
tistical variance assumptions] but as informative aspects
of treatment effects. (p. 13)

So in some studies, dispersion may be interesting in its own right.

��� Reflection Problems ���

1. When is SDX > SDX
2, when is SDX = SDX

2, and when is SDX < SDX
2?

2. What is the SOS of z scores for different values of n?

3. What is the minimum number of scores that may create a variable (i.e.,

SOSX > 0, VarX > 0, SDX > 0)?

4. If some data are missing for variables, how does substituting the mean

for missing values impact the SD of the data using imputed values as

against the SDs of the data computed by simply omitting any cases with

missing data?

5. Use the z scores presented in the Appendix within SPSS to compute other

standardized scores. For example, if you use the SPSS command

COMPUTE iq = (z * 15) + 100 .

what is the mean and the standard deviation of the new scores? If you

use a multiplicative constant of 3, and an additive constant of 15, what is

the mean and the standard deviation of the new scores?

6. Using the data and additive and multiplicative constants in Reflection

Problem 3 in Chapter 2, what rule can we formulate to express the

effects on SDs of additive constants (e.g., “new SD always equals original

SD . . .”)? What rule can we formulate to express the effects on SDs of

multiplicative constants (e.g., “new SD always equals original SD . . .”)?

Why mathematically do these rules work? When will a multiplicative con-

stant not change the value of the original SD?
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4

Shape

I
n Chapter 1, I noted that sometimes we try to characterize an acquain-
tance unknown to our friends. Typically, more than one characteriza-
tion is required to capture essential features of personality. And which
characterizations will be relevant depends upon our purposes and our

personal values. The same dynamics apply to using descriptive statistics to
characterize data.

In some cases, characterizing the shape of the distribution, such as the
data presented in a histogram, is of interest. Two descriptive statistics con-
stitute this third class of characterizations—the second and third moments
of deviations about the mean as a benchmark—and they apply third and
fourth powers to deviation scores as part of their computations. These two
statistics were conceptualized by Karl Pearson, whose interest in shape
also influenced his work on relationship statistics, as will be seen in Chap-
ter 5.
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��� Two Shape Descriptive Statistics

Most of us have experienced the horrors of blind dating. When confronted
with these opportunities, survival skills are quickly heightened. We soon
learn to ask questions—LOTS of questions. If the physical attractiveness
of the blind date candidate is a consideration, we will be prudent and
request some characterizations involving shape. The same two kinds of
issues arise when attempting to characterize the shape of data distribu-
tions.

Symmetry

When we are considering the possibilities of a blind date, an important
starting point for many of us will be the symmetry of the candidate. In
general, for aspects of human anatomy usually involving two of a given
feature, many of us prefer to see exactly two of these features (e.g., ears,
eyes), and we often prefer them to be located in roughly the same location
in reference to the centerline of the body.

So, we may aspire for two eyes, or two ears, roughly equidistant from
the nose. For features that we would usually expect to be represented by
one feature (e.g., a nose), we may prefer that this is located on or near the
centerline. These are not the only shape features of interest. But symmetry
may well be an essential starting point in the blind-dating dialogue.
(Assume nothing, or you may be hugely sorry!)

Conceptually, data are symmetrical when we draw a line through the
median and the distribution shapes on either side of the median are identi-
cal. Mathematically, data are symmetrical whenever MX = MdnX. Indeed,
the discrepancy between MX and MdnX is a crude index of the degree to
which data diverge from symmetry.

Perfectly symmetrical distributions should yield descriptive character-
izations (including MX – MdnX) of symmetry of zero iff the data are per-
fectly symmetrical in shape. And these descriptive statistics should get
increasingly large in absolute value as the data increasingly diverge from
perfect symmetry.

When data are asymmetrical, the distributions are said to be skewed.
Specifically, if MX < MdnX, the distribution is said to be “negatively
skewed” or “skewed left.” If MX > MdnX, the distribution is said to be
“positively skewed” or “skewed right.”
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The coefficient of skewness is a descriptive statistic characterizing
whether or not a distribution is symmetrical and, if the distribution is
asymmetrical, how much so. The coefficient of skewnessX can be com-
puted using the unstandardized (or “raw scores”) formula:

[n / ((n – 1)(n – 2))][Σ(((Xi – X) / SDX)3)] (4.1)

An algebraically equivalent formula is

[n / ((n – 1)(n – 2))](Σ(zi
3)) (4.2)

Equation 4.2 makes clear that the coefficient of skewness is in the
standardized score world. However, the characterizations of symmetry
that are derived in this world also describe the scores in the unstandard-
ized score world. Indeed, for a given set of scores, we will obtain identical
answers if we apply (a) Equation 4.1 to the raw scores in the unstandard-
ized score world, (b) Equation 4.2 to the scores in the standardized score
world, or (c) Equation 4.1 to the scores in the standardized score world.

Note that the coefficient of skewness can never be computed unless n
is at least 3, because of the use of (n – 2) within a divisor. Of course, con-
ceptually distributions consisting of only one or two scores could not be
skewed anyway. Nor can the coefficient be computed at any sample size
for any constant, because of the use of SD as a divisor in Equation 4.1 or
as a divisor in the computation of the z scores required for Equation 4.2.

Table 4.1 presents symmetrical scores of five participants on two vari-
ables, X and Y. For the variable X, using the “raw score” formula, for the
leftmost portion of the formula we have [n / ((n – 1)(n – 2))] = [5 / ((5 – 1)
(5 – 2))] = [5 / (4)(3)] = [5 / 12] = 0.416.

For the rightmost portion of the “raw score” formula, we have

Xi – M = xi SDX xi / SDX (xi / SDX)3

0 – 4.0 = –4 3.16 –1.26 –2.02
2 – 4.0 = –2 3.16 –0.63 –0.25
4 – 4.0 = 0 3.16 0.00 0.00
6 – 4.0 = 2 3.16 0.63 0.25
8 – 4.0 = 4 3.16 1.26 2.02

Sum 0.00
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So, the coefficient of skewness for variable X is 0.416 times 0.00, or 0.00.
This corresponds to the Table 4.1 report that the mean and the median are
both 4.00. This also corresponds to the representation of the data in Fig-
ure 4.1, which illustrates that the distribution is clearly symmetrical.

For variable Y—using the standardized score formula—because the
sample size is still 5, we again have [n / ((n – 1)(n – 2))] = [5 / ((5 – 1)
(5 – 2))] = [5 / (4)(3)] = [5 / 12] = 0.416. The rightmost portion of the for-
mula can be computed as

z z3

–1.41 –2.83
0.00 0.00
0.00 0.00
0.00 0.00
1.41 2.83

Sum 0.00

So, the coefficient of skewnessY is 0.416 times 0.00, or 0.00.
Table 4.2 presents two examples of skewed distributions, one nega-

tively skewed and one positively skewed. The inequalities of the respective
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TABLE 4.1. Two Examples of Symmetrical Distributions

Participant/Statistic Xi Yi ZX ZY

Bob 0 1 –1.265 –1.414
Hilda 2 3 –0.632 0.000
Marilyn 4 3 0.000 0.000
Gloria 6 3 0.632 0.000
Bruce 8 5 1.265 1.414

M 4.00 3.00 0.00 0.00
Mdn 4.00 3.00 0.00 0.00
SOS 40.00 8.00 4.00 4.00
SDa 3.16 1.41 1.00 1.00

aNote that this is the statistic SD, not the parameter σ.



means and medians portend the nonzero results we will obtain for these
data.

Figure 4.2 also graphically (rather than mathematically) suggests that
the data are skewed. For variable X1, the corpus of the scores cluster
around –1 or –2. The more anomalous score(s) (here –5) constitute the
“tail” of the distribution. Because the tail of the distribution is to the left
of the body of scores, this distribution is “skewed left” or “negatively
skewed.”

For X1, using the “raw score” formula, we obtain
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FIGURE 4.1. Histograms of the Table 4.1 symmetrical data

TABLE 4.2. Two Examples of Skewed Distributions

Participant/
Statistic X1i X2i ZX1 ZX2

Bob –1 1 0.577 –0.447
Hilda –1 1 0.577 –0.447
Marilyn –1 1 0.577 –0.447
Gloria –2 1 0.000 –0.447
Bruce –5 9 –1.732 1.789

M –2.00 2.60 0.00 0.00
Mdn –1.00 1.00 .58 –0.45
SOS 12.00 51.20 4.00 4.00
SDa 1.73 3.58 1.00 1.00

aNote that this is the statistic SD, not the parameter σ.



X1i – M = x1i SDX1 x1i / SDX1

–1 – –2.0 = 1 1.73 0.577 0.192
–1 – –2.0 = 1 1.73 0.577 0.192
–1 – –2.0 = 1 1.73 0.577 0.192
–2 – –2.0 = 0 1.73 0.000 0.000
–5 – –2.0 = –3 1.73 –1.732 –5.196

Sum –4.619

Given that the leftmost portion of the equation remains 0.416, for the
coefficient of skewness, we obtain 0.416 times –4.619, or –1.924.

For X2, using the standardized scores, we obtain

z z3

–0.447 –0.089
–0.447 –0.089
–0.447 –0.089
–0.447 –0.089
1.789 5.724

Sum 5.366

For the coefficient of skewness, we obtain 0.416 times 5.366, or 2.236.
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Relative Height (Relative Width)

Having confirmed that the potential blind date candidate is reasonably
symmetrical, surely there is more to the story of shape. Blind dating is har-
rowing stuff. We had best exercise extreme, absolute caution. Are all rea-
sonably symmetrical people equally attractive?

What if the candidate is hugely tall, or extraordinarily short? What if
the candidate is hugely wide, or amazingly narrow? Clearly, another con-
sideration may be height or width. But it is really some function of height
to width, or of width to height, that is of primary import. Maybe tall peo-
ple can be quite wide and look “just right” regarding their weight. Maybe
narrow people can look “just right” if they are not too tall.

The statistic that measures this and related features of data is called
the coefficient of kurtosis. The “raw score” formula for the coefficient is

{[(n(n + 1)) / ((n – 1)(n – 2)(n – 3))][Σ(((Xi – X) / SDX)4)]} (4.3)
– [(3((n – 1)2)) / ((n – 2)(n – 3))]

The standardized score formula is

{[(n(n + 1)) / ((n – 1)(n – 2)(n – 3))](Σ(zi
4))} (4.4)

– [(3((n – 1)2)) / ((n – 2)(n – 3))]

As in other cases we have seen, the raw score formula is computationally
easier, but the standardized score formula for the coefficient of kurtosis
makes more obvious the logic of the computation and makes more obvi-
ous the fact that the formula’s home is in the standardized score world.

Note that the coefficient of kurtosis can never be computed unless n is
at least 4, because of the use of (n – 3) in a divisor. Nor can the coefficient
be computed at any sample size for any constant, because of the use of SD
as a divisor in Equation 4.3 or as a divisor in the computation of the z
scores required for Equation 4.4.

As suggested by Equation 4.4, kurtosis focuses on how many scores
are near to or far from the mean in the metric of deviation scores mea-
sured in SD units. This statistic focuses on the concentration of scores near
the mean versus away from the mean. And because the third moment
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takes scores to the fourth power (i.e., a quartic function), outliers are
going to REALLY impact this statistic.

Distributions that have exactly the same number of scores throughout
the distribution are called rectangular or uniform. Distributions that have
relatively the same number of scores in the extremes versus near the mean
are called platykurtic. Distributions that have relatively few scores in the
extremes versus having many scores near the mean are called leptokurtic.
Distributions that are unimodal and neither platykurtic nor leptokurtic are
called mesokurtic. Let’s consider three distributions to get some feel for
how the coefficient of kurtosis functions.

Table 4.3 presents the scores of nine people on the variable X3i, on
which the scores are bimodal and define a U-shaped distribution. We can
see this shape graphically in Figure 4.3.

To break down the computations into manageable blocks, let’s rede-
fine the raw score coefficient of kurtosis as equaling a * b – c, where

a = [(n(n + 1)) / ((n – 1)(n – 2)(n – 3))] (4.5)

b = [Σ(((Xi – X) / SDX)4)] (4.6)
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TABLE 4.3. Leptokurtic, Platykurtic, and Mesokurtic Distributions

Participant/
Statistic X3i X4i X5i ZX3 ZX4 ZX5

Deborah 1 4 1 –1.000 –0.943 –1.633
Donna 1 5 3 –1.000 –0.236 –0.816
Molly 1 5 3 –1.000 –0.236 –0.816
Geri 1 5 5 –1.000 –0.236 0.000
Catherine 5 5 5 –1.000 –0.236 0.000
Peggy 9 5 5 –1.000 –0.236 0.000
Carol 9 5 7 –1.000 –0.236 0.816
Anne 9 5 7 –1.000 –0.236 0.816
Murray 9 9 9 –1.000 2.593 1.633

M 5.00 5.33 5.00 0.00 0.00 0.00
SOS 128.00 16.00 48.00 8.00 8.00 8.00
SDa 4.00 1.41 2.45 1.00 1.00 1.00

aNote that this is the statistic SD, not the parameter σ.



c = [(3((n – 1)2)) / ((n – 2)(n – 3))] (4.7)

For any dataset involving nine participants, such as the Table 4.3 data, we
have

a = [(n(n + 1)) / ((n – 1)(n – 2)(n – 3))]
= (9(9 + 1)) / ((9 – 1)(9 – 2)(9 – 3))

= (9(10)) / ((8)(7)(6))
= 90 / ((8)(7)(6))

= 90 / (56(6))
= 90 / 336
= 0.268
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Similarly, for any dataset involving nine participants, for c we have

c = [(3((n – 1)2)) / ((n – 2)(n – 3))]
= (3((9 – 1)2)) / ((9 – 2)(9 – 3))

= (3(82)) / (7(6))
= (3(64)) / (7(6))
= (3(64)) / (42)

= 192 / 42
= 4.571

For the Table 4.3 data on variable X3i, for which MX = 5.00 and SDX =
4.00, we now solve for b as the sum of (xi / SDX)4:

Xi – X = xi / SDX = xi / SDX

1 – 5.0 = –4.0 / 4.0 = –1 1
1 – 5.0 = –4.0 / 4.0 = –1 1
1 – 5.0 = –4.0 / 4.0 = –1 1
1 – 5.0 = –4.0 / 4.0 = –1 1
5 – 5.0 = 0.0 / 4.0 = 0 0
9 – 5.0 = 4.0 / 4.0 = 1 1
9 – 5.0 = 4.0 / 4.0 = 1 1
9 – 5.0 = 4.0 / 4.0 = 1 1
9 – 5.0 = 4.0 / 4.0 = 1 1

Sum 8.00

So the coefficient of kurtosis for these platykurtic data is (0.268 * 8.00) –
4.571 = 2.143 – 4.571 = –2.428.

Table 4.3 presents the scores of nine people on the variable X4i, which
has a leptokurtic shape. We can see this shape graphically in Figure 4.3.
We can compute the coefficient of kurtosis using the z-score Equation 4.4.
Values of a and c remain unchanged, given a fixed sample size of nine par-
ticipants, but in this algebraically equivalent standardized score formula,
b = (Σ(zi

4)). For the Table 4.3 data, we have
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Xi – X = xi / SDX = zi zi
4

4 – 5.33 = –1.33 / 1.41 = –0.943 0.790
5 – 5.33 = –0.33 / 1.41 = –0.236 0.003
5 – 5.33 = –0.33 / 1.41 = –0.236 0.003
5 – 5.33 = –0.33 / 1.41 = –0.236 0.003
5 – 5.33 = –0.33 / 1.41 = –0.236 0.003
5 – 5.33 = –0.33 / 1.41 = –0.236 0.003
5 – 5.33 = –0.33 / 1.41 = –0.236 0.003
5 – 5.33 = –0.33 / 1.41 = –0.236 0.003
9 – 5.33 = 3.67 / 1.41 = 2.593 45.188

Sum 46.000

So the coefficient of kurtosis for these leptokurtic data is (0.268 * 46.00) –
4.571 = 12.321 – 4.571 = 7.750.

Variable X5i in Table 4.3 is approximately mesokurtic. Using raw
score Equation 4.3, for this variable we solve for b as the sum of (xi / SDX)4:

Xi – X = xi / SDX = xi / SDX

1 – 5.0 = –4.0 / 2.449 = –1.633 7.111
3 – 5.0 = –2.0 / 2.449 = –0.816 0.444
3 – 5.0 = –2.0 / 2.449 = –0.816 0.444
5 – 5.0 = 0.0 / 2.449 = 0.000 0.000
5 – 5.0 = 0.0 / 2.449 = 0.000 0.000
5 – 5.0 = 0.0 / 2.449 = 0.000 0.000
7 – 5.0 = 2.0 / 2.449 = 0.816 0.444
7 – 5.0 = 2.0 / 2.449 = 0.816 0.444
9 – 5.0 = 4.0 / 2.449 = 1.633 7.111

Sum 16.000

So the coefficient of kurtosis for these mesokurtic data is (0.268 * 16.00) –
4.571 = 4.286 – 4.571 = –0.285.
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��� Normal Distributions

Judgments of symmetry are rather straightforward and require no arbi-
trary benchmark. We can judge quite well when people (or data) are sym-
metrical without invoking a standard. But how can height relative to
width of a blind date candidate be evaluated without a standard for how
much of the person (or data) should be in the extremes, and how much
should be in the middle?

In conventional blind-date negotiations, one invariably turns to a
standard (e.g., “She is shaped like Marilyn Monroe” or “He is shaped like
Clark Gable” [younger readers may wish to substitute Brad Pitt, Paris
Hilton, or some other choice, as a standard]). So, too, there is a standard
in evaluating when data are Goldilocks just right, or mesokurtic, in the
distribution of height relative to width.

Normal distributions are used as the gold standard for evaluating
kurtosis (Henson, 1999). There are infinitely many different normal distri-
butions. Every normal distribution is perfectly mesokurtic (i.e., has a coef-
ficient of kurtosis of exactly zero).

Normal distributions were conceptualized by de Moivre, later used by
Laplace, and popularized by Gauss in 1809 in the analysis of astronomical
data. Normal distributions have many very important uses in statistics.
Consequently, these distributions are given several synonymous names,
for reasons that by now are evident to the reader. The synonymous names
include “normal distributions,” “Gaussian distributions,” and somewhat
colloquially, “bell-shaped distributions.”

There is only one normal distribution for a given combination of M
and SD. However, there are infinitely many normal distributions, because
there are infinitely many values of M and SD. Of course, two different
normal distributions may have (a) different means but the same SDs,
(b) the same means but different SDs, or (c) both different means and dif-
ferent SDs.

For a given score on Xi, the height of the histogram can be determined
using the equation

u = [1 / (SD)((2(pi))0.5)][e–{((Xi–M)(Xi–M)) / (2(SD)(SD))}] (4.8)
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Substituting the approximate value of 2.718 for e (the base of the system
of natural logarithms) and 3.142 for pi (the ratio of the circumference of
any circle to its diameter), and given that ((2(3.142))0.5) = 6.2840.5 =
2.5067, we have

u = [1 / (SD)(2.5067)][2.718–{((Xi–M)(Xi–M)) / (2(SD)(SD))}] (4.9)

Although the formula looks intimidating, the computation can be eas-
ily performed using a spreadsheet such as Excel. Assuming the M value is
stored in cell A$1, the SD is stored in cell A$2, and the specified value of
Xi is stored in cell A$3, the command is

+(1/(A$2*2.5067))*(2.718^–(((A$3–A$1)^2)/(2*(A$2^2))))

In a spreadsheet, the character “*” means “times,” and “^” means “raised
to the exponential power of.”

Iff a normal distribution has a mean of zero and a standard deviation
(and variance) of 1.0, the distribution is said to be standard normal (or
unit normal). This is not meant to imply that all normal distributions are
in z-score form. This is also not meant to imply that all z-score distribu-
tions are normal. But for a standard normal distribution, given its values
M = 0.0 and SD = 1.0, for the score of zi = 1.0, for example, the value of u
would equal

(1 / (1.0 * 2.5067)) * (2.718–(((1.0 – 0.0)^2) / (2 * (1.0 ^2))))
(1 / 2.5067) * (2.718–(((1.0 – 0.0)^2) / (2 * (1.0 ^2))))

0.3989 * (2.718–(((1.0 – 0.0)^2) / (2 * (1.0 ^2))))
0.3989 * (2.718–(((1.0)^2) / (2 * (1.0 ^2))))

0.3989 * (2.718–((1.0) / (2 * (1.0 ^2))))
0.3989 * (2.718–((1.0) / (2 * (1.0))))

0.3989 * (2.718–((1.0) / (2.0)))
0.3989 * (2.718–0.5)

0.3989 * 0.607
0.242

Table 4.4 presents values of u for selected values of Xi for normally
distributed McCall’s T scores, which always have a mean of 50.0 and a
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standard deviation of 10.0. Figure 4.4 is an SPSS graphic of a plot of val-
ues of u against corresponding values of Xi, which displays as a bell shape.

All normal distributions have certain properties. First, normal distri-
butions are symmetric and unimodal, with mode = Mdn = M. Second, nor-
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TABLE 4.4. Values of u for 61 Values of Xi for a
Normal Distribution When M = 50 and SD = 10

Xi u Xi u Xi u

20 0.0004 40 0.0242 60 0.0242
21 0.0006 41 0.0266 61 0.0218
22 0.0008 42 0.0290 62 0.0194
23 0.0010 43 0.0312 63 0.0171
24 0.0014 44 0.0333 64 0.0150
25 0.0018 45 0.0352 65 0.0130
26 0.0022 46 0.0368 66 0.0111
27 0.0028 47 0.0381 67 0.0094
28 0.0035 48 0.0391 68 0.0079
29 0.0044 49 0.0397 69 0.0066
30 0.0054 50 0.0399 70 0.0054
31 0.0066 51 0.0397 71 0.0044
32 0.0079 52 0.0391 72 0.0035
33 0.0094 53 0.0381 73 0.0028
34 0.0111 54 0.0368 74 0.0022
35 0.0130 55 0.0352 75 0.0018
36 0.0150 56 0.0333 76 0.0014
37 0.0171 57 0.0312 77 0.0010
38 0.0194 58 0.0290 78 0.0008
39 0.0218 59 0.0266 79 0.0006

80 0.0004

FIGURE 4.4. Normal distribution for M = 50.0 and SD = 10.0



mal distributions are asymptotic to the horizontal (i.e., X) axis, which
means that the further scores are from the mean, the more their frequen-
cies decrease, but the frequencies never reach zero.

The asymptotic properties of the normal distribution can be con-
cretely understood if we determine the proportion (or, if multiplied by
100, the percentage) of datapoints below a given score, Xi, in a given nor-
mal distribution. The spreadsheet Excel will return this value if we invoke
the statistical function:

=normdist(X,M,SD,true)

where X is the given score, M is the mean of the normal distribution of
interest, and SD is the standard deviation of the normal distribution of
interest.

For example, if we presume that IQ scores are exactly normally dis-
tributed and if we input

=NORMDIST(175,100,15,TRUE)

Excel will return the value

0.999999713

This means that 99.9999713% of all people have an IQ score less than
175. But, by the same token, 0.0000287% of all people (or roughly 287
people out of a billion) have an IQ of 175 or more. Asymptotic in this con-
text means, at least theoretically, that there is (or eventually will be)
always somebody smarter out there!

The normal distribution has the interesting property that fixed pro-
portions of scores are in the six regions defined by the mean plus or minus
zero, one, two, or three times the standard deviation. For our IQ score
example, we obtain

M Multiplier SD IQ % below

100.0 –3 15.0 55 00.135
100.0 –2 15.0 70 02.275
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100.0 –1 15.0 85 15.866
100.0 0 15.0 100 50.000
100.0 1 15.0 115 84.134
100.0 2 15.0 130 97.725
100.0 3 15.0 145 99.865

Fixed percentages (or proportions) of scores fall between these bound-
aries. For example, 68.27% (84.134 – 15.866) of the scores fall between
M – 1(SD) and M + 1(SD), and 95.45% of the scores fall between
M – 2(SD) and M + 2(SD). The percentage of additional scores captured
by going out successive multipliers of the SD can also be computed (e.g.,
68.27% – 0.0% = 68.27%; 95.45% – 68.27% = 27.18%; 99.73% –
95.45% = 4.28%). So we have for each and every one of the infinitely
many normal distributions

Unique to one
Cumulative more SD in

Region % in region both directions

M – 1(SD) to M + 1(SD) 68.27 68.27%
M – 2(SD) to M + 2(SD) 95.45 27.18%
M – 3(SD) to M + 3(SD) 99.73 4.28%

By the same token, because all normal distributions are symmetric,
34.13% (68.27% / 2) of the scores fall specifically in the region from
M – 1(SD) to M, and 34.13% of the scores fall in the region from
M + 1(SD) to M. Similarly, 13.59% (27.18% / 2) of the scores fall specifi-
cally in the region from M – 2(SD) to M – 1(SD), and 13.59% of the
scores fall in the region from M + 1(SD) to M to M + 2(SD) to M. So we
have, for the six regions consuming 99.73% of scores, for each and every
one of the infinitely many normal distributions,

Region % in region

<M – 3(SD) 0.135
M – 3(SD) to M – 2(SD) 2.14
M – 2(SD) to M – 1(SD) 13.59
M – 1(SD) to M – 0(SD) 34.13
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M – 0(SD) to M + 1(SD) 34.13
M – 1(SD) to M + 2(SD) 13.59
M – 2(SD) to M + 3(SD) 2.14

>M + 3(SD) 0.135

Knowledge of these relationships is useful because intervally-scaled
data, at least when collected on large numbers of participants, tend to be
normally-distributed. Thus, these percentages tend to be approximately
accurate in many research situations.

If I give an examination to a huge number of doctoral students, and
the data are normally distributed, with M = 15.0 and SD = 3.0, I can
answer such questions as these:

1. What percentage of students had a score less than 21.0?
[Answer: 50.0% + 34.13 + 13.59% = 97.72%]

2. What is the score below which 15.865% of the students score?
[Answer: 15.0]

3. What percentage of students score between 12.0 and 21.0?
[Answer: 34.13% + 34.13% + 13.59% = 81.85%]

Indeed, if we employ the Excel NORMDIST statistical function, we can
determine the percentages for any score, or the score for any multiple
(including noninteger multiples) of the standard deviation.

��� Two Additional Univariate Graphics

As noted in Chapter 2, histograms are a useful univariate graphic. Histo-
grams provide insight about score location, dispersion, and shape. Histo-
grams can be readily obtained in SPSS by using the HISTOGRAM procedure
under the GRAPHS menu. And as an option, SPSS will draw a normal curve
over the histogram for comparative purposes.

Another useful univariate graphic is the stem-and-leaf plot. These
plots can be produced in SPSS using the EXAMINE procedure under the
SUMMARIZE submenu in the ANALYZE menu. Assume we have 34 scores: {1,
10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22,
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22, 23, 24, 24, 25, 26, 26, 27, 28, 28, 29, 30, 30, 45}. Figure 4.5 presents
a stem-and-leaf plot for these data.

The “stem” of the stem-and-leaf plot is the leading digit of the num-
bers (i.e., here 0, 1, 2, 3, or 4). The “leaf” is the next digit defining a given
datapoint. For example, the Figure 4.5 plot indicates that one person had
a score with a stem of 0 and a leaf of 1 (i.e., one person had a score of 01).
Eight people had the stem of 1, and two of these eight people had leafs of
0 (i.e., scores of 10). One of these eight people had a leaf of 1 (i.e., a score
of 11). Two of these eight people had leafs of 2 (i.e., scores of 12). One
person had a score labeled “extreme” (i.e., 45).

A third, wonderful univariate graphic is the box plot (or the box-and-
whiskers plot). The SPSS EXAMINE procedure will also produce this plot.
Figure 4.6 presents the box plot for these data.

The initial step in creating the box plot is to compute the median loca-
tion, truncating any fractional values. For n = 34, the median location is
(n + 1) / 2 = (34 + 1) / 2 = 35 / 2 = 17.5, which we truncate to 17. The
median itself for these data is 20.0. The dark horizontal line within the
vertical box plot is drawn at MdnX.

We next compute hinge locations, which equal (median location + 1) / 2.
For our data, we have (17 + 1) / 2 = 18 / 2 = 9. We use this to find the
hinges, which here are the scores located ninth from the bottom (i.e., 14)
and ninth from the top (i.e., 26). For our data, the hinges are 14.0 and
26.0.

For large samples, the hinges correspond to the first and third quartile
scores, and will be near these scores for small samples. Thus, some com-
puter programs create the box plot using Q1 and Q3 (i.e., the 25th and the
75th percentiles, using Equation 2.1) rather than the hinges.

Next, we compute the hinge spread, which is simply the range
between the two hinges (i.e., here 26.0 – 14.0 = 12.0) and either equals or
approximates the IQRX. We then use the hinge spread to compute the
inner fences that we will use as boundaries for identifying outlying scores.
The lower inner fence equals the lower hinge (here 14.0) minus the con-
stant of 1.5 times the hinge spread (i.e., 14.0 – 1.5(12.0) = 14.0 – 18.0 =
–6.0). The upper inner fence equals the upper hinge (here 26.0) plus the
constant of 1.5 times the hinge spread (i.e., 26.0 + 1.5(12.0) = 26.0 + 18.0
= 44.0).

Finally, we compute the adjacent values by comparing our actual
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scores to the inner fences. The lower adjacent value is the smallest score
greater than or equal to the lower inner fence. For our data, our smallest
score greater than or equal to –6.0 is 1. The upper adjacent value is the
largest score less than or equal to the upper inner fence. For our data, our
smallest score less than or equal to 44.0 is 30.

We now have the requisite information with which to draw the box-
and-whiskers plot. In a vertical box plot, a box is drawn using the lower
and upper hinges to define the lower and upper horizontal lines of the
box. So, the box captures approximately the inner 50% of the scores, or
exactly 50% of the scores if we are using Q1 = P25 and Q3 = P75 instead of
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FIGURE 4.5. Stem-and-leaf plot from SPSS

FIGURE 4.6. Normal distribution for M = 50.0 and SD = 10.0



hinges. A dark horizontal line is drawn within the box to represent the
median.

A “whisker” is drawn off the bottom of the vertical box down to the
lower adjacent fence value (i.e., 1). A whisker is also drawn off the top of
the vertical box up to the upper adjacent fence value (i.e., 30).

Any scores below the lower adjacent fence are portrayed as asterisks
(or circles) within our plot. Here we have no scores below our lower adja-
cent fence of 1. Any scores above the upper adjacent fence are also por-
trayed as asterisks (or circles). We have one score (i.e., 45) above the
upper adjacent fence of 30.

The box plot tells us a good deal about our data. If the data are
approximately symmetrical, the median will be about halfway between the
smallest and the largest scores and roughly in the middle of the box, and
the whiskers will be of roughly equal length.

Box plots are also useful in identifying potential outlying scores, as
regards location, dispersion, and shape. The plots also give an impression
of just how extreme outlying scores may be. Of course, an outlier on one
variable may not be outlying on any other variables. And, as we shall see
in Chapter 5, an outlier as regards location, dispersion, and shape may not
be an outlier on descriptions of relationships among the variables.

Some Key Concepts

The shapes of data distributions that are at least intervally-scaled may
be characterized by computing statistics that quantify (a) symmetry
(i.e., the coefficient of skewness) and (b) height relative to width (i.e.,
the coefficient of kurtosis). Kurtosis evaluates shape against the stan-
dard of the normal curve, which has a coefficient of skewness of zero
and a coefficient of kurtosis of zero.

There are infinitely many normal distributions. But for data with
both (a) a given mean and (b) a given SD, only one normal distribu-
tion exists. Iff the data are in z-score form, the normal distribution is
called “standard normal.” Distributions may be standard, normal, or
both. Symmetry may be established visually by examining histograms
of the data, but the normality of symmetrical data cannot be estab-
lished merely by examining histograms.

When data that are at least intervally-scaled are collected with
large samples, often the data are normal or near normal. In such cases
we can invoke knowledge of what percentages of scores fall within
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score ranges in the normal distribution in order to more fully under-
stand the dynamics within our data.

��� Reflection Problems ���

1. If we are given the score range for a normal distribution, how can we use

only this information to solve for the approximate SD of the scores?

2. For a given dataset, how will using mean substitution for missing values

impact the coefficient of skewness for data that were initially skewed?

How will using mean substitution for missing values impact the coeffi-

cient of kurtosis? How does mean substitution differentially impact

postsubstitution means, SD, skewness, and kurtosis?

3. Draw a distribution for which MX < MdnX, but modeX > MX and modeX >

MdnX. Draw a distribution for which MX > MdnX, but modeX < MX and

modeX < MdnX.

4. The scores presented in the Appendix are nearly normally distributed.

Enter these z scores into SPSS. Then click on ANALYZE, then on DESCRIPTIVE

STATISTICS, and then on FREQUENCIES. Use the STATISTICS subcommand to

obtain the score mean, median, SD, and coefficients of skewness and

kurtosis. Also, graph the scores by using the CHARTS subcommand; select

HISTOGRAM and check WITH NORMAL CURVE. After the chart is generated,

double left click on the chart to enter the CHART EDITOR. Click on EDIT, then

SELECT X AXIS, and set the X-axis minimum value to –5 and the maximum

value to 55. This allows comparisons of graphs with different data

because the X axis will be scaled consistently.

Now use the command

COMPUTE x2 = (z * 4) + 20 .

to create another set of scores. Compute the same statistics for these

data, and plot the scores. How do the skewness and kurtosis coefficients

of the two sets of scores compare? How well does each histogram fit the

respective normal curve plot? What does this imply about whether there

is only one normal distribution?

4. Shape 95



5. Using the data and additive and multiplicative constants in Reflection

Problem #3 in Chapter 2, what rule can we formulate to express the

effects on coefficients of skewness and kurtosis of additive constants?

What rule can we formulate to express the effects on coefficients of

skewness and kurtosis of multiplicative constants? When will a multiplica-

tive constant not change the value of the original coefficient of skew-

ness? When will a multiplicative constant change the value of the original

coefficient of skewness?
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5

Bivariate
Relationships

T
he descriptive statistics explained in Chapters 2 through 4 are
univariate statistics. That is, these descriptions can be formulated
to characterize data even when only one variable is present.

However, real science is always about the investigation of rela-
tionships that occur under stated conditions. Though we can describe fea-
tures of data even if we only have data on a single variable, and such
univariate descriptions may hold some personal interest for us or satisfy
our curiosity, only when we have at least two variables do things really get
serious.

In the simplest case of true science, we have exactly two variables. The
statistics that describe relationships between two variables are bivariate
statistics. We can only compute these statistics when we have two vari-
ables.

But the bivariate relationship descriptive statistics discussed here,
although important in and of themselves, are also critical in laying the
conceptual foundation for understanding the sophisticated analyses that
accommodate even more than two variables. Indeed, even very compli-
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cated multivariate statistics can be explained using bivariate statistics con-
cepts (Fan, 1996; Kimbell, 2001; Thompson, 1991a).

Parametric statistics presume that the dependent variable is intervally-
scaled, and make shape assumptions as well. An important theme of this
book, which we are building toward, is that all statistical analyses are cor-
relational and are part of a global general linear model (Bagozzi, Fornell,
& Larcker, 1981; Cohen, 1968; Knapp, 1978). The general linear model
(GLM) has important implications for how we conduct and interpret
quantitative analyses.

Of course, just as levels of scale drive what descriptive statistics can be
computed for univariate characterizations, levels of scale also impact
options in the bivariate case. However, now the levels of scale of two vari-
ables must be simultaneously considered.

We will emphasize four combinations of scale: (a) the Pearson r,
which requires that both variables are at least intervally-scaled;
(b) Spearman’s rho (ρ), which requires that both variables are at least
ordinally-scaled (but one or both variables may be scaled higher);
(c) phi (φ), which can be used with two variables that are dichotomous;
and (d) point–biserial correlation (rpb), which is used when one variable
is dichotomously scored and the other variable is at least intervally-
scaled.

Additional descriptive relationship statistics (e.g., biserial and
tetrachoric correlation, Kendall’s tau (τ)) are beyond the scope of the pres-
ent treatment, but the four coefficients listed in the previous paragraph
will stand you in good stead in commonly-encountered research situa-
tions.

These four coefficients are all score-world descriptive statistics. Fur-
thermore, φ and rpb are merely algebraically-equivalent formulas that can
be used in place of an explicitly Pearson r formula, but yield exactly the
same result as a Pearson r computation, and so are the Pearson r for cer-
tain levels-of-scale combinations. And Spearman’s ρ is merely the Pearson
r (or an algebraic equivalent) applied to data either expressed originally as
ranks, or data converted to ranks.
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��� Pearson’s r

When both variables are at least intervally-scaled, we can compute the
Pearson product–moment correlation coefficient (r) as

rXY = COVXY / (SDX * SDY) (5.1)

where COVXY is also a description of bivariate relationship, called the
covariance, and which is computed for a sample as

COVXY = (Σ(Xi – MX)(Yi – MY)) / (n – 1) (5.2)

The standard deviations are computed using the statistic formula that
assumes we have sample data. Equation 5.2 for the COVXY invokes devia-
tion scores, as do the first, second, and third moment about the mean, and
can be reexpressed as

COVXY = (Σ(xi[yi])) / (n – 1) (5.3)

The fact that the numerator of the COVXY uses deviation scores sug-
gests the possibility of using z scores in an algebraically equivalent for-
mula, because all z scores are themselves deviation scores (thus the
lowercase z). And Equation 5.1, given z scores, because both standard
deviations equal 1.0, simplifies to rzXzY = COVzXzY. For a given dataset, rXY

always exactly equals rzXzY (for reasons that we will encounter later). So we
can also compute the Pearson r for either the X with the Y scores or the zX

with the zY scores (or the zX with the Y scores, or the X with the zY scores)
as

rXY = (Σ(zXi[zYi])) / (n – 1) (5.4)

Equation 5.1 makes obvious that the Pearson r is a standardized
covariance (i.e., a covariance with the standard deviations removed by
division), and that r is not only in the score world, but also is specifically
in the standardized score world. Equation 5.4 makes even more apparent
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the fact that r is a standardized, score-world descriptive statistic. The
COVXY, on the other hand, is an area-world descriptive statistic.

Given that the covariance is a description of bivariate relationship,
also requiring interval scaling of both variables, why is COVXY not itself
used as a description of bivariate association? To answer this question,
first we look at an algebraic rearrangement of Equation 5.1:

COVXY = rXY * SDX * SDY (5.5)

where “*” means “multiplied by.”
This formula asserts that three factors influence the covariance as a

descriptive result, and thus makes the description confounded and ambig-
uous, at least in some cases. We can see this in the following data for pairs
of variables, all of which have COVXY approximately equal to 10,000:

COVXY = rXY * SDX * SDY

10000.0 = 1.00 * 100.00 * 100.00
10000.1 = 0.75 * 0.25 * 53334.00
10000.0 = 0.50 * 100.00 * 200.00
10000.0 = 0.25 * 1.00 * 40000.00
10000.0 = 0.01 * 100.00 * 10000.00
10000.0 = 0.01 * 0.50 * 2000000.00

Thus, the covariance is of limited descriptive value, because a given result
may reflect a lot of relationship and little score spread on either variable,
or a little relationship and a lot of score dispersion on one or both vari-
ables, or many other possibilities!

This is not meant to suggest that the covariance is unimportant for
other purposes not involving description. The covariance is important in
its own right as part of the computation of r. And the covariance is also
used as the primary basis for many multivariate analyses (i.e., analyses
simultaneously considering multiple dependent variables, an important
topic, but one not covered in this book).

Several things are made obvious by thinking about Equation 5.1.
First, r is a bivariate statistic. It is truly excellent that r cannot be com-
puted unless both X and Y are variables. If either or both X and Y are con-
stants, r is undefined, because division by zero is impermissible. Having r
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be undefined unless there are two variables is fantastic, because this means
we don’t have to hire statistics police to monitor all statistics calculations
throughout the world to make sure that no one is computing r unless both
X and Y are variables.

Remember that

undefined ≠ 0 (5.6)

Two variables may have a correlation of zero. But having an undefined
r does not (i.e., not) mean that the correlation is zero. If you know that an
r = 0, you know certainly that both X and Y must have been variables, or
there simply would be no r.

If we think further about Equation 5.1, rather than rotely memorizing
the equation, we can extrapolate additional revelations (i.e., the intellec-
tual orgasms that learning is really all about). First, because the two SDs
can never be negative, rXY and the COVXY always have the same sign. Sec-
ond, rXY and COVXY will always be equal if (but not iff) the two standard
deviations have a crossproduct of 1.0, which will occur iff the two SDs are
reciprocals of each other (e.g., SDX = 1.0, SDY = 1.0; SDX = 0.5, SDY =
2.0). Third, rXY and the COVXY will always be equal (and zero) if (but not
iff) either the rXY or the COVXY is zero, regardless of the standard devia-
tions, as long as both X and Y are variables (i.e., SDX ≠ 0 and SDY ≠ 0).

��� Three Features of r

r Describes Only Linear Relationship

A scattergram (or scatterplot) is a bivariate graphic displaying the pairs of
scores for each individual in the dataset. Just as a histogram is ubiquitous
in the univariate case, the scattergram is ubiquitous in bivariate statistics.

Table 5.1 presents the scores of 12 people on the variables X and Y.
Figure 5.1 presents the scattergram of these data. As is the case in a histo-
gram, unless otherwise declared in a figure note, each asterisk (or diamond
or square or other object) represents one person. But in a scattergram,
each asterisk (diamond, or other object) represents two scores for a given
person, rather than only one score. For example, in the Figure 5.1 scatter-
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gram, note that Paul is the lowest, leftmost asterisk, and Patty is the high-
est, rightmost asterisk. Paul’s asterisk communicates that his X and Y
scores were 1 and 1, respectively.

One way to conceptualize r is to think of r as addressing the question
“How well does the line of best possible fit capture the asterisks in the
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FIGURE 5.1. Scattergram of the Table 5.1 data

TABLE 5.1. Scores of n = 12 Participants on Two Variables

Participant/statistic Xi Yi xi yi xyi

Paul 1 1 –3.0 –4.5 13.5
Christopher 2 2 –2.0 –3.5 7.0
Michael 3 3 –1.0 –2.5 2.5
Ralph 5 5 1.0 –0.5 –0.5
Randy 6 6 2.0 0.5 1.0
Steve 7 7 3.0 1.5 4.5
Jennifer 1 4 –3.0 –1.5 4.5
Stephanie 2 5 –2.0 –0.5 1.0
Elizabeth 3 6 –1.0 0.5 –0.5
Sarah 5 8 1.0 2.5 2.5
Judy 6 9 2.0 3.5 7.0
Patty 7 10 3.0 4.5 13.5

Sum 48.00 66.00 0.00 0.00 56.00
M 4.00 5.50 0.00 0.00
SD 2.26 2.75

Note. Selected entries for the five people who scored below the means on both variables are
presented in bold. Selected entries for the five people who scored above the means on both
variables are presented in italics.



scattergram?” The line of best fit has been drawn in Figure 5.1 for the
Table 5.1 data.

The Pearson r will be at its minimum or maximum limits (–1 or +1,
respectively) iff all the asterisks in the scattergram are on the line. An r of
+1 or –1 is called a perfect relationship. When there is no linear relation-
ship between the two variables, any line of best fit that we draw will cap-
ture the asterisks equally badly, and r will equal zero.

When r is positive, the relationship between the two variables is said
to be direct or positive. When the linear relationship is positive, as scores
on one variable become larger, scores on the other variable tend to also be
larger (or the converse; i.e., scores on both variables tend to get smaller
together). For example, the number of calories people consume on average
each day tends to be directly related to their weights.

When the linear relationship (and Pearson’s r) is negative, as scores on
one variable become larger, scores on the other variable tend to be smaller
(or vice versa). For example, the number of miles people jog each day
tends to be inversely related to their weights.

In the unstandardized score world, the line of best fit is a function of
Y , X , SDY, SDX, and rXY. The line of best fit will be horizontal (flat) iff r is
zero, and otherwise will not be flat.

Table 5.1 presents the means and standard deviations of the two vari-
ables, computed in the manner explained in previous chapters. Let’s now
solve for the Pearson product–moment correlation coefficient. For these
data, as reported in Table 5.1, the sum of the 12 crossproducts (i.e.,
Σxi[yi]) is 56.00, which according to Equation 5.3 yields a COVXY of 5.09
(i.e., 56.00 / 11). Thus, rXY for these data is COVXY / [(SDX)(SDY)] = 5.09 /
[(2.26)(2.75)] = 5.09 / 6.22 = 0.82.

Now, how do we know where to draw the line of best fit within the
scattergram? We can identify (fix) the location of a line as long as we can
solve for any two points on the line.

An important implication of Equation 5.2 is that the intercept of the
two means is always on the line of best fit. Indeed, the line of best fit
always pivots on this point. In fact, this point is so important that rather
than call this point the Cartesian coordinate of the two means, we instead
call this location the centroid. (If we called the point defined by the means
of all the measured variables “the means of all the measured variables,”
everybody would know what we were talking about, and that would be
unsatisfactory.)
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So one point defining our line of best fit for our data is the location,
4.00 on X, and 5.50 on Y. We can solve for a second point on the line of
best fit, if we know the Pearson correlation coefficient (here rXY = 0.82).
The point where the line of best fit crosses the Y (or vertical axis; i.e., Y
when X = 0) is called a.

We can solve for a as

a = Y – [rXY(SDY / SDX)](X) (5.7)

For our data we have a as

5.50 – [0.82(2.75 / 2.26)](4.00)
5.50 – [0.82(1.22)](4.00)

5.50 – [1.00](4.00)
5.50 – 4.00

1.50

Notice that the line of best fit does not capture any of the asterisks in
the Figure 5.1 scattergram. Note also that r does not ask “how many”
asterisks we can catch with a line, but instead focuses on “how close” we
can come to capturing the asterisks, under a restriction that we cannot
focus exclusively on some asterisks (e.g., the top six asterisks in the scat-
tergram) unfairly at the expense of any other asterisks.

I want to emphasize that r measures linear, and only linear, relation-
ship, because we are trying to catch all the asterisks with a line. However,
never forget that curvilinear (i.e., nonlinear) relationships are also entirely
possible. Consider the data in Table 5.2 for George, which involve mea-
suring how much pleasure he experiences upon being given daily various
amounts of vanilla ice cream.

George is what statisticians call “a vanilla ice-cream hound.” George
LOVES ice cream. George would eat a shoe if the shoe had ice cream on it.
But in this case, as in many others, at some point you can get too much
even of a good thing (e.g., teacher praise of first-grade students) or even a
very good thing (e.g., use your imagination).

A hypothetical “pleasure-ometer” is used to measure how much joy
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or, conversely, unhappiness George experiences. On this pleasure-ometer,
the maximum pleasure a human can experience yields a score of +10. The
maximum unhappiness a human can experience yields a score of –10.

The Pearson r for the Table 5.2 data is 0.00. There is no linear rela-
tionship between these data. However, if we examine the Figure 5.2 plot
of the Table 5.2 data, it becomes obvious that there is a systematic and,
indeed, virtually perfect relationship between these variables. The relation-
ship, however, is curvilinear.

When given successively more vanilla ice cream each day, from 1 to 5
gallons, George’s pleasure increases each time. However, the incremental
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TABLE 5.2. Pleasure-ometer Readings for
George over 10 Days of Ice Cream Deliveries

Day Gallons delivered Pleasure

1 1 1
2 2 4
3 3 7
4 4 9
5 5 10
6 6 10
7 7 9
8 8 7
9 9 4

10 10 1

FIGURE 5.2. Scattergram of the Table 5.2 data



increase in his pleasure decreases with each successive increment in ice
cream. There is no difference in pleasure experienced when moving from
5 to 6 gallons. And every increase in ice cream from 6 to 10 gallons causes
a reduction in pleasure.

Indeed, Figure 5.2 suggests that going from 10 to 11 and then to 12
gallons of ice cream actually causes unhappiness, even for an ice-cream
hound! The projected pleasure-ometer readings for these amounts of ice
cream would be –3.7 and –9.2.

The Pearson r for these data is zero even though there is a near-perfect
curvilinear relationship between the variables, because the Pearson r only
measures linear relationship. This means that when r = 0.0, there may be
anywhere from a zero relationship of all kinds (including curvilinear) to a
perfect relationship of all kinds (including curvilinear).

The only time that r tells us both (a) about linear relationship and (b)
that there is zero curvilinear relationship is when r is perfect (either –1 or
+1). The reason is that when there is a perfect linear relationship, there is
no possibility of any curvilinear relationship. If all the asterisks define and
are on a line in the scattergram, no curvilinear pattern is possible.

Relationships between variables are often either partially or primarily
linear, although variables often also have elements of curvilinear relation-
ship at some point. Thus curvilinear relationships, as well as linear rela-
tionships, are of interest in research.

There are two ways to investigate curvilinear relationship. First,
graphics like the scattergram can be used to inform judgment about
curvilinear relationship. Second, some descriptive statistics that we will
encounter in subsequent chapters can be used to quantify the amount of
curvilinear relationship.

r Is in an Ordinal Metric

The Pearson r is a descriptive statistic quantifying the amount of linear
relationship between two variables that are at least intervally-scaled.
However, this does not mean that the r statistic itself is intervally-scaled.

In fact, r itself is ordinally-scaled as regards the variance common to
the two variables. This means that rAB = +1.0 is larger than rXY = +0.5 or
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that rAB = +1.0 in one sample is larger than rAB = +0.5 in a separate sample.
However, the r of +1.0 is not twice as large as the r of +0.5. Two trans-
forms of Pearson r are fairly common, although they are typically done for
different purposes.

Fisher’s r-to-z Transform

One way of reexpressing r is to invoke a transformation, called the r-to-z
transformation, developed by Sir Ronald Fisher. Fisher developed a num-
ber of statistical methods, for which he was knighted in Great Britain (we
will hear more about him in Chapter 10, when we discuss the analysis of
variance). This transform was developed for statistical purposes such as
hypothesis testing, a topic covered in Chapter 6.

The r-to-z transform yields a score-world statistic. The formula for
Fisher’s r-to-z transformation is

0.5 * (LN((1 + ABS(r)) / (1 – ABS(r)))) (5.8)

where LN means “take the natural logarithm of” and ABS means “take
the absolute value of.” After the computation, if r was negative, the nega-
tive sign is restored to the r-to-z value. This formula can be easily executed
in Excel, presuming that the r value has been inserted into spreadsheet cell
A1, using the following command:

=.5*(@ln((1+@abs(A1))/(1-@abs(A1))))

For example, for r = 0.82, we obtain

= 0.5(LN((1 + 0.82) / (1 – 0.82)))
= 0.5(LN((1.82) / (0.18)))

= 0.5(LN(10.11))
= 0.5(2.31)

= 1.16
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As another example, consider the extreme value of r = 0.99. Now we
have

= 0.5(LN((1 + 0.99) / (1 – 0.99)))
= 0.5(LN((1.99) / (0.01)))

= 0.5(LN(199.00))
= 0.5(5.29)

= 2.65

Note that the r-to-z transform, not unlike the z scores in a normal distribu-
tion, tends to range between roughly –3 and +3.

r2 as a Descriptive Statistic

The squared value of r (r2), unlike r, is itself intervally-scaled as regards the
variance common to the two variables. Thus, rAB

2 = +1.0 (or 100%) is four
times larger than rXY

2 = +0.25 (or 25%). And the result also means that
rAB = +1.0 is four times larger than rXY = +0.5.

The descriptive statistic r2 is called the coefficient of determination or
the common variance. Of course, unlike r, which is in the standardized
score world, r2 is in the area world. The interval properties of r2 have led
to the popular (albeit extremely brief) hit rap song, the only lyrics of
which are “Square, before you compare!”

Table 5.3 presents some interesting uses of the coefficient of determi-
nation in comparing the correlation coefficients of IQs of family members
under various situations (Erlenmeyer-Kimling & Jarvik, 1963). Some
researchers prefer to always express r2 as a percentage (e.g., 25%) because
doing so helps them remember that common variance is a squared, area-
world statistic.

The number 1 minus the glass-full coefficient of determination yields
the glass-empty perspective of the coefficient of alienation. For example,
according to the Table 5.3 data, with knowledge of one set of identical
twins’ IQs, we can linearly predict or explain all but 22.6% (100% –
77.4%) of the set of paired identical twins’ IQ scores, provided the twins
were reared together.

Although the coefficient of determination has considerable utility, one
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of the statistic’s downsides is that we lose the sign of the relationship
(direct or inverse) once we square. The implication is that we usually use
both r and r2 when investigating bivariate relationship, because both
descriptive statistics provide useful, although different, information.

The descriptive statistic rXY
2 is called the coefficient of determination

(or common variance), because the statistic tells us that with knowledge of
the scores on X we can explain or predict a given percentage of the vari-
ability (either the variance or the sum of squares) on Y. For example, with
knowledge of the Table 5.1 scores on X, we can explain or predict rXY

2 =
0.822 = 67.2% of the information about individual differences on Y (i.e.,
SOSY or SDY

2).
This does not mean that we can explain exactly 67.2% of the variabil-

ity of each of the 12 individual scores on Y. All statistics are on the aver-
age. Given r2 = 67.2%, we might be able to explain exactly 67.2% of each
individual Y score’s squared deviation from MY, because 67.2% of each
individual squared deviation does yield a group average of 67.2%. But the
more likely outcome for most datasets is that we can explain 67.2% of the
score variability (i.e., SOSY or SDY

2) on the average, and we may do better
at predicting some squared deviations and worse at explaining or predict-
ing others. In Chapter 8, we will learn how to determine what exact por-
tion of specific, individual scores, as well as of their squared deviations,
can be determined with knowledge of predictor variable scores.

For example, the variance of the Y scores is SDY
2 = 2.752 = 7.56

squared units of Y. With knowledge of the X scores, we can explain 5.08
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TABLE 5.3. Correlations of IQs of Family Members
across Various Living Conditions

Person pair r r2 Increase
Ratio to

foster parent

Identical twins reared together 0.88 77.4% 37.7% 21.5
Identical twins reared apart 0.75 56.3% 100.2% 15.6
Fraternal twins 0.53 28.1% 3.9% 7.8
Parent with own child 0.52 27.0% 12.6% 7.5
Siblings reared together 0.49 24.0% 13.5% 6.7
Siblings reared apart 0.46 21.2% 486.1% 5.9
Foster parent with child 0.19 3.6% — —



squared units of Y out of the 7.56 variance in squared units of Y
[7.56(67.2%) = 5.08].

Because, for a given dataset, n is fixed (here 12), we can work with the
SOS rather than with some average of the SOS, such as the SD2. For a
fixed sample size, we do not have to divide all our results by n – 1, or 11,
and may simply work with the sum of squares, which still yields apples-to-
apples comparisons for a given single fixed sample size.

Given that SDY = 2.75, for a sample n of 12, we can solve for the
SOSY as

SDY
2(n – 1) (5.9)

For our data this yields SOSY = SDY
2 (n – 1) = 2.752(12 – 1) = 2.752(11) =

7.56(11) = 83.19. For these data, with knowledge of the scores on X, we
can explain or predict 55.94 (i.e., 67.2%(83.19)) squared units of infor-
mation on Y out of the 83.19 squared units of information that are avail-
able for these 12 people.

��� Three Interpretation Contextual Factors

Causality and Third Variable Problems

A major theme of this book is that all statistics are correlational. However,
not all research designs are correlational (or nonexperimental). Some
research designs invoke randomized clinical trials (RCTs, in which cases
are randomly assigned to treatment conditions) and are therefore truly
experimental. Only experimental designs (including single-subject designs)
can definitively answer questions about causality (Thompson, Diamond,
McWilliam, Snyder, & Snyder, 2005).

Because causal issues are so important in education, psychology, and
medicine, RCTs are very highly regarded and appropriate once inquiry has
ripened to the point where their expense is justified (Mosteller & Boruch,
2002; Shavelson & Towne, 2002). Serious problems can occur if research-
ers attempt to extrapolate conclusive causal inferences from nonexperi-
mental research involving correlation coefficients.

110 FOUNDATIONS OF BEHAVIORAL STATISTICS



To make this discussion concrete, consider the quasi-hypothetical data
(i.e., the data are approximate but real for a recent point in time) pre-
sented in Table 5.4. The table presents data on three variables for 10 cities
in the United States. The first two variables are the numbers of houses of
worship (e.g., churches, mosques, synagogues) and the numbers of mur-
ders in a given year.

The Pearson r for the first two variables for these data is 0.91. The r2

is 82.8%. Does this result mean that large numbers of churches cause peo-
ple to murder each other? Does this result mean that large numbers of
murders cause people to build more houses of worship?

These data reflect the difficulties of making causal inferences from
nonexperimental descriptive statistics. The example reflects what statisti-
cians call the third variable problem (i.e., the problem that a third, fourth,
et cetera variable may spuriously inflate a correlation coefficient or, con-
versely, that a third, fourth, et cetera variable may spuriously attenuate a
correlation coefficient).

The third variable problem may also be described as the mediator
variable discussed in Chapter 1. As Baron and Kenny (1986) explained,
“In general, a given variable may be said to function as a mediator to the
extent that it accounts for the relation between the predictor and the crite-
rion” (p. 1176).

For these data, once the researcher obtains the result rAB = 0.91, the
reasonable researcher would immediately invest considerable thought in
trying to understand the result. Most researchers would eventually realize
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TABLE 5.4. Scores on Three Variables for 10 Cities

City Houses of worship Murders Population

New York City 3,500 1,980 7,322,600
Los Angeles 2,020 1,060 3,485,600
Chicago 2,860 920 2,783,700
Houston 2,010 450 1,629,900
Philadelphia 1,710 420 1,585,600
San Diego 580 140 1,110,600
Detroit 1,480 590 1,028,000
Dallas 1,310 370 1,007,600
Phoenix 660 130 983,400
San Antonio 940 210 935,400



that a third variable, population size, confounds the correlation coefficient
computed between numbers of houses of worship and numbers of mur-
ders.

The partial correlation coefficient can be computed to estimate the
correlation of two variables, controlling for the influence of a third vari-
able. The partial correlation can be used to explore either spurious infla-
tion or spurious attenuation of the bivariate coefficient. And the formula
can be expanded to simultaneously consider several extraneous variables
at a time.

The formula for the partial correlation coefficient (i.e., rAB.C) control-
ling for only one extraneous variable is

[rAB – (rAC)(rBC)] / [((1 – rAB
2).5)((1 – rBC

2)0.5)] (5.10)

For the Table 5.3 data we have

= [0.91 – (0.85)(0.97)] / [((1 – 0.852)0.5)((1 – 0.972)0.5)]
= [0.91 – 0.82] / [((1 – 0.852)0.5)((1 – 0.972)0.5)]

= [0.09] / [((1 – 0.852)0.5)((1 – 0.972)0.5)]
= [0.09] / [((1 – 0.72)0.5)((1 – 0.94)0.5)]

= [0.09] / [(0.280.5)(0.06)0.5)]
= [0.09] / [(0.53)(0.25)]

= [0.09] / [0.13]
= 0.65

Thus, churches and murders in these 10 cities had 0.912, or 82.8%,
common variance. But after controlling for population size, the two vari-
ables had only 0.652, or 42.2%, common variance. The common variance
might be even smaller if we controlled for additional variables (e.g.,
income or education levels).

The problem is that, unlike our current example, we may quite con-
ceivably be correlating two variables for which neither (a) the spurious r
inflation or attenuation nor (b) the extraneous variables are obvious. The
example should make it abundantly clear that drawing causal inferences
from correlation coefficients can easily lead to erroneous conclusions.
Thus, considerable caution must be exercised when interpreting correla-
tional results in nonexperimental designs.
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Moderator Effects

In Baron and Kenny’s (1986) conceptualization, whereas “mediators speak
to how or why . . . [emphasis added] effects occur,” as in the
murders–churches example, “moderator variables specify when certain
effects will hold” (p. 1176). The Pearson r is “on the average.” It is also pos-
sible that different averages, or r values, occur within different subgroups of
the data. Sometimes identifying subgroup variations in r may be quite useful.

Table 5.5 presents hypothetical data for testing done on 16 high
school students at the beginning and the end of a school year. The correla-
tion of pretest with posttest scores is 0.87, suggesting that the scores are
highly and positively linearly associated.

But when we compute the correlation coefficients separately for the
nongifted (r = 0.74) and the gifted (r = 0.96), it becomes clear that the pre-
dictive or explanatory power of the pretest scores differs somewhat across
the groups. These differences may be noteworthy, given that rTOTAL

2 =
0.872 = 75.7%, rNONGIFTED

2 = 0.742 = 55.6%, and rGIFTED
2 = 0.962 = 91.8%,

and thus the association for the gifted students is 1.65 times larger (i.e.,
91.8% / 55.6% = 1.65) than the association for the nongifted students.

The take-home message is that when computing r, considerable
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TABLE 5.5. Pretest and Posttest Scores
for Eight Gifted and Eight Nongifted Students

Group Pretest Posttest

Gifted 140 200
Gifted 140 180
Gifted 130 170
Gifted 130 150
Gifted 120 140
Gifted 120 120
Gifted 110 110
Gifted 110 90
Nongifted 100 40
Nongifted 100 60
Nongifted 70 30
Nongifted 70 50
Nongifted 40 20
Nongifted 40 40
Nongifted 10 10
Nongifted 10 30



insights may be realized by disaggregating the data. Some subgroups may
have quite divergent association patterns. And even when the r for the
total group is relatively small in absolute value, some subgroups may have
stronger patterns of linear relationships.

Restriction of Range

It is widely believed by applied researchers that restriction of range (i.e.,
disproportionately small SD of one or both sample variables relative to the
population) always attenuates r (Walsh, 1996). However, this should seem
counterintuitive. As noted previously, when we divide we are attempting
to remove from our answer whatever we are using as a divisor. Because
rXY = COVXY / [SDX(SDY)], we might reasonably assume that the standard
deviations do not affect r, because their influence is being removed from r
by division.

The dynamics involved in range restriction are actually fairly compli-
cated (see Huck, 1992; Huck, Wright, & Park, 1992). In exploring these
issues, it is critical to distinguish the degree of correspondence of the sam-
ple r to the population parameter from questions about the replicability of
r across samples.

The replicability of r statistics across samples can be affected by two
sample features, one of which, indeed, does involve score dispersion. First,
the number of pairs of scores affects the replicability of r statistics (as is
generally true for all statistics). The r computation takes into account the
ordering of cases across the rows of the raw data matrix. There is simply
more compelling evidence of generalized row-ordering effects when they
are replicated over more and more rows of data.

Second, the score dispersion does also affect replicability of r results.
The further scores are from other datapoints, the harder it is for small
movements of scores for given cases across replication to shift their ordi-
nal positions. Thus, greater SD does tend to lead to more replicable esti-
mates for r.

However, having a sample with restricted range (i.e., disproportion-
ately small SD relative to the population) does not always attenuate r so
that r is closer to zero. Instead, a sample with restricted range can either
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attenuate or increase the magnitude of r, depending upon the circum-
stances.

Consider the Table 5.6 hypothetical paired scores for 14 students
completing the SAT and then receiving GPAs for their first year of college.
The data are graphically presented in the Figure 5.3 scattergram.

For these data, the Pearson r is 0.44 (r2 = 19.4%). However, if only
students with SAT scores higher than 675 had been admitted to college,
the SAT variable’s range would have been restricted, with a concomitant
narrowing of GPA score dispersion. For these four cases, the r with
restricted range is actually higher in absolute magnitude (r = –1.00;
r2 = 100.0%), and larger by a factor of roughly five.

Clearly, restricted range does not always lead to attenuated results for
r. Selective subsamples with restricted score ranges may yield r values that
are smaller, or larger, or equal to the values for the larger dataset.

But what if the population parameter correlation coefficient for bil-
lions of score pairs is +1.0? Now all samples of two or more score pairs,
even score pairs drawn at the narrow extremes of the two distributions,
will yield subgroup r values that exactly match those of the population!
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TABLE 5.6. Hypothetical Sample
of 14 Paired SAT and GPA Scores

ID SAT GPA

1 431 3.20
2 434 3.50
3 528 3.25
4 509 3.45
5 517 3.70
6 583 3.40
7 587 3.90
8 626 3.70
9 662 3.20

10 665 3.50
11 685 3.90
12 705 3.80
13 724 3.70
14 744 3.60



��� Psychometrics of the Pearson r

The Pearson r, as a standardized covariance, can only range between its
mathematical limits of –1 and +1, inclusive. To see this, let’s think of the
exceptional case of computing the covariance of a variable with itself (e.g.,
COVXX). Here we can reexpress Equation 5.2 to characterize the associa-
tion of X with X:

COVXX = (Σ(Xi – X)(Xi – X)) / (n – 1) (5.11)

This is the formula (SOSX / (n – 1)) for the variance. Thus, the covariance
of a variable with itself is the variance (i.e., COVXX = SDX

2) of the variable.
Now let’s think of the correlation of a variable (never a constant for

which SDX
2 = 0) with itself (e.g., rXX). Now we have rXX = COVXX / SDX

2 =
SDX

2 / SDX
2 = 1.0. Conceptually, the most highly correlated a variable

could be is the correlation with itself, and that correlation must be 1.0.
Therefore, the upper limit on r is +1. The most inversely related a correla-
tion would be is the correlation with the inverse of itself. Therefore, the
lower limit on r is –1.

Examination of the numerator (i.e., Σ(Xi – X)(Yi – X)) of the covari-
ance numerator in the calculation of r further reveals the nature and sensi-
tivities of r. As noted previously, this numerator declares focal interest in
the bivariate centroid as a pivot point for drawing in the scattergram the
line of best fit to the asterisks as a set.
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FIGURE 5.3. Scattergram of the Table 5.6 SAT and GPA data



We can also think of the two reference lines drawn at the means of Y
and X within the scattergram as dividing the scattergram into four quad-
rants. For all asterisks in the upper right quadrant, all these cases had
scores on both Y and X above their respective means. Therefore, all their
deviation scores on both Y and X are positive, and thus all their
crossproducts (i.e., xyi) are positive.

For all asterisks in the lower left quadrant, all these cases had scores
on both Y and X below their respective means. Therefore, all their devia-
tion scores on both Y and X are negative. But a negative times a negative
yields a positive, and thus all their crossproducts (i.e., xyi) are positive.

For all asterisks in the upper left quadrant, all these cases had scores
on Y above the Y mean, and scores on X below the X mean. Therefore, all
their deviation scores on Y are positive, but all their deviation scores on X
are negative. Thus, all their crossproducts (i.e., xyi) are negative.

For all asterisks in the lower right quadrant, all these cases had scores
on Y below the Y mean and scores on X above the X mean. Therefore, all
their deviation scores on Y are negative, but all their deviation scores on X
are positive. Because a negative times a positive yields a negative, all their
crossproducts (xyi) are negative.

The denominator of the covariance (i.e., n – 1) can never be negative,
and neither can the r denominator (i.e., SDX(SDY)) ever be negative. There-
fore, the numerator of the covariance (i.e., Σxyi) completely determines the
sign of r. So, the preceding discussion implies that one of the several situa-
tions in which r will always be positive is if all the asterisks in the scatter-
gram are only in the lower left and the upper right quadrants defined by
the means. And one of the several situations in which r will always be neg-
ative is if all the asterisks in the scattergram are only in the upper left and
the lower right quadrants defined by the means.

In all other cases in which some of the asterisks are in all four quad-
rants defined by the two means, counting the number of asterisks in the
quadrants (i.e., lower left and upper right versus upper left and lower
right) is insufficient for determining the sign of the Pearson r. In this last
case, the magnitudes of the deviation scores are determinative.

For example, for the Table 5.1 data, five people are in the lower left
quadrant: Paul, Christopher, Michael, Jennifer, and Stephanie. Five people
are in the upper right quadrant: Randy, Steve, Sarah, Judy, and Patty. One
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person is in the upper left quadrant: Ralph. And one person is in the lower
right quadrant: Elizabeth.

Because the magnitudes of the xyi of Ralph and Elizabeth are small
(i.e., –0.5 and –0.5), the sum of the crossproducts quickly becomes posi-
tive once we add in the other 10 crossproducts (e.g., 13.5, 7.0, 2.5). And
so the covariance and r are both positive for these data.

It also becomes clear that for r to be zero, some asterisks must be in all
four quadrants, and the sum of the crossproducts must be zero. For exam-
ple, COVXY and rXY will be zero for the four pairs of scores: {1,1; 3,1; 1,3;
3,3, on Y and X, respectively}.

Now the natures of the covariance and of r become clear. In the scat-
tergram, when we compute the deviation score yi, we are measuring the
vertical distance of yi from MY; and when we compute the deviation score
xi, we are measuring the horizontal distance of Xi from MX.

These two distances (from the Cartesian score coordinate Xi,Yi to the
MY or the Y line, and from the Cartesian score coordinate Xi,Yi to the MX

or the X line) define a 90° angle. We can therefore invoke the Pythagorean
theorem to solve for the length of the hypothenuse, di. For a given person,
di

2 = yi
2 + xi

2; so di = (yi
2 + xi

2)0.5.
The length of this hypothenuse is the distance of a given case’s score

pair (i.e., Xi,Yi) from the centroid (i.e., X ,Y ). Cases near the centroid (i.e.,
small di) inherently exert less leverage on determining the sign and the
magnitude of r.

Cases farther from the centroid may exert greater leverage on deter-
mining r. However, cases with large di values will still not exert this poten-
tial leverage, notwithstanding a large di, iff either of their yi and xi scores
are zero or near-zero, because their crossproduct (i.e., xyi) will be small if
either yi or xi are small.

��� Spearman’s rho

Pearson’s product–moment correlation coefficient invokes the product
(i.e., xyi) of first-moment unsquared deviation scores from the two means
(i.e., xi and yi). The r statistic quantifies how well a straight line captures
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all the asterisks in a scattergram. This means that the Pearson r asks the
following two questions:

1. How well do the two variables order the cases in exactly the same
(or the opposite) order?, and

2. To what extent do the two variables have the same shape?

This second consideration necessarily comes into play, because a straight
line can catch all the asterisks in a scattergram if and only if (iff) the two
variables have the same shape.

The Pearson r will be +1 (or –1) iff (a) the two variables identically
order the cases (or perfectly order the cases in inverse directions) and (b)
the two variables both have identical coefficients of skewness and
kurtosis. An important implication of this realization is that the limits of r
cannot be rigidly used when interpreting results unless the two variables
have the same shapes or the researcher considers shape differences equally
as important as ordering differences. Two rs of 0.50 and 0.77 might both
involve variable pairs that order cases identically, but different degrees of
result attenuation due to univariate shape differences.

Consider the following intervally-scaled data:

Participant X Y

Murray 1 3
Deborah 2 4
Geri 3 5
Donna 97 99

The standard deviations of these two variables do not affect r, as long as
neither is zero, because we remove the SDs from r by dividing the covari-
ance by the two SDs. In our example, these two variables have identical
SDs, but this is irrelevant to our computation of r as long as both SDs >
0.0. The two variables have different means, but location also does not
affect r.

Only (a) variable ordering and (b) variable shape affect r. Here both
variables identically order the four participants. And both variables have
identical shape. So the Pearson r for these data is +1.0.
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By the way, note that Donna is extremely unusual in some respects,
but is quite typical in others. Donna is an outlier as regards the means, the
dispersions, and the shapes of both X and Y.

But if we plot these data in a scattergram, Donna’s asterisk would lie
directly on the line of best fit, as would all the asterisks. And if we took
Donna’s two scores out of the dataset, the r would still be +1.0. Donna is
clearly not an outlier as regards relationship.

Remember now and for always that (a) people can be outliers on some
variables but not others, and (b) people can be outliers on some statistics
but not others, even for the same dataset. And don’t feel too bad if you are
an outlier on some variables and/or some statistics. Healthy people proba-
bly are outliers on something, somewhere, some of the time.

But what if we had the following data?

Participant X Y

Robert 1 1
David 2 2
James 3 3
Douglas 4 999,999,999

Assuming the data are at least intervally-scaled, we could compute the
Pearson r. However, even though both variables identically order the four
cases, r will not be perfect because the two variables do not have identical
shape. The Pearson correlation coefficient can only reach its mathematical
limits when both variables are identically shaped.

Here the r equals 0.77. The result reflects the shape differences of the
two variables. The result is not inherently problematic. But we must
remember that an r less than +1 or greater than –1 does not mean that the
two variables necessarily order the cases differently. A given coefficient
may instead merely reflect shape differences in the two variables.

So unless we consult our data further when confronted with r = 0.77,
we must interpret the result as reflecting different ordering of the cases
across the two variables, or different variable shapes, or both. We can
only get an unambiguous interpretation by also computing shape statistics
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for the two variables, or plotting the two variables (e.g., a histogram, or a
box plot).

However, when we have data that are at least intervally-scaled, if we
wish to ask only the first of the two questions posed by the Pearson r (i.e.,
whether the two variables order the cases identically), we can compute an
alternative descriptive relationship statistic, Spearman’s rho (ρ).

Spearman’s ρ can also be computed when both or either of the two
variables are only ordinally-scaled. Spearman’s ρ assumes that the two
variables contain no information about distance, and consequently com-
pletely ignores shape or other issues presuming at least interval scaling,
even when one or both variables are in fact intervally-scaled.

For both our small datasets, ρ would be +1.0. That is, ρ has the same
mathematical limits as Pearson’s r (i.e., –1 to +1), and will be perfect
whenever the two variables order the cases identically (or perfectly but
inversely).

Computing both r and ρ for a dataset characterizes the relationships
between the two variables in different ways. For the first dataset (i.e.,
Murray, Deborah, Geri, and Donna), r = +1, and ρ = +1. The result that
r = +1 tells us that the variables both ordered the cases identically and had
identical shapes. Here, ignoring shape when computing ρ has no effect,
because ignoring shape when shapes for the two variables are identical has
no effect.

For the second dataset, for which r = 0.77, and ρ = 1.00, we can com-
pare these two results to quantify the magnitude of the effect of paying
attention to both variable ordering and shape versus paying attention to
only variable ordering. Of course, we must make the comparisons in the
area world. The difference of r2 = 0.772 = 59.3% versus ρ2 = 100.0% tells
us that shape differences produced a difference of 0.407 (1.000 – 0.593) in
the two coefficients for these data.

No Tied Ranks

Spearman’s ρ is the Pearson product–moment r between two variables if
the variables are expressed as ranks. However, iff the data involve ranks
with no ties, the formula for r can be algebraically reexpressed. When
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both variables in a pair have the same number of cases, and no tied ranks,
the denominator SDs in the r formula are necessarily both equal.

This means that the denominator of the r formula, (SDX)(SDY),
becomes the variance of either X or Y, because the two standard devia-
tions are equal. And when we are computing the variance of ranks with no
ties, a formula equivalent to computing the parameter variance by divid-
ing SOS by n is

σ2
RANKS = (n2 – 1) / 12.0 (5.12)

The Table 5.7 ranks for variables A, B, and C can be used to illustrate
these computations. Because there are no tied ranks on variables A and B,
and n = 7, the variance of the scores is (72 – 1) / 12.0 = (49 – 1) / 12.0 =
(48) / 12.0 = 4.0. As noted in Table 5.7, the SOS of the ranks on A and B
is 28.0, and computing the parameter variance instead using the SOS we
again obtain 28.0 / 7 = 4.0.

Iff the data are ranks with no ties, in addition to reexpressing the com-
putation of the r denominator, we can also algebraically reexpress (see
Siegel, 1956) the various ways of computing COVXY / (SDX(SDY)) as

ρ = 1 – {[6(Σ(Xi – Yi)2)] / [n(n2 – 1)]} (5.13)
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TABLE 5.7. Ranks of Seven People on Three Variables

Participant/
statistic A a a2 B b b2 C c c2 (A – B)2 (A – C)2 (B – C)2

Eileen 7 3 9 2 –2 4 1 –3 9 25 36 1
Ida 6 2 4 3 –1 1 2 –2 4 9 16 1
Kathy 5 1 1 1 3 9 3 –1 1 16 4 4
Mary 4 0 0 4 0 0 4 0 0 0 0 0
Molly 3 –1 1 5 1 1 5 1 1 4 4 0
Nancy C. 2 –2 4 6 2 4 6.5 2.5 6.25 16 20.25 0.25
Nancy H. 1 –3 9 7 3 9 6.5 2.5 6.25 36 30.25 0.25

M 4.0 4.0 4.0
Sum 0.0 28.0 0.0 28.0 0.0 27.50 106.0 110.5 6.5
Sum / n 0.0 4.0 0.0 4.0 0.0 3.93



For example, in Table 5.7, variables A and B have no tied ranks. For these
data, as noted in Table 5.7, Σ(Xi – Yi)2 = 106.0, and ρ:

= 1 – {[6(106)] / [7(72 – 1)]}
= 1 – {[6(106)] / [7(49 – 1)]}

= 1 – {[6(106)] / [7(48)]}
= 1 – {[6(106)] / [336]}
= 1 – {[636)] / [336]}

= 1 – 1.89
= –0.89

The fact that Equation 5.13 yields Spearman’s ρ for the case of no tied
ranks does not mean that we must use this formula to obtain ρ. If instead
we apply any formula for the Pearson r to data with no tied ranks, we will
obtain exactly the same result. Spearman’s ρ is nothing more (or less) than
the Pearson r between ranks, and we can also always compute ρ by apply-
ing any formula for the Pearson r to any ranked data, to address the sole
question that ρ poses: How well do the two variables order the cases in
exactly the same (or the opposite) order?

Tied Ranks

When intervally-scaled data are converted into ranks, it is conventional to
assign tied ranks to cases with tied interval scores. For example, if two ris-
ing high-school seniors both had GPAs of 3.92 and eight students had
higher GPAs, with the highest GPA being assigned the rank of 1, the two
students with 3.92 GPAs would both be assigned the class rank of
9.5 ((9 + 10) / 2).

Assigning ranks for tied scores in this manner has the property that
the mean is preserved as equaling what the mean would be if there were
no tied ranks. For example, for the Table 5.7 data, the means of all three
variables are 4.0, even though on variable C Nancy C. and Nancy H. both
have tied ranks of 6.5.

However, when some ranks are tied, scores inherently become less dis-
persed. For example, as reported in Table 5.7, the variance of C is not 4.0,
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but instead is 3.93 (i.e., SOSC / n). The implication is that we cannot use
Equation 5.12 or 5.13 when the ranks include any ties.

When data include tied ranks, we must compute ρ by using one of the
algebraically equivalent formulas for the Pearson r. Notice that we are
computing both a Pearson r and SDs when both variables are ordinally-
scaled (i.e., ranks). But in this exceptional case, the results are nevertheless
sensible. We honor the exception by calling the result ρ even when the
Pearson r formula is invoked for the computation. Note also that this ex-
ception does not mean that r can be computed for ordinal data that are in
any form other than ranks!

Why does ρ only address the single question about fidelity of case
ordering by the two variables? Because when the variables are ranks with
no ties, the shapes of the two distributions are constrained to be identical;
thus questions of shape differences are moot. And when the data include
ties, the presumption that there are relatively few ties, especially in the
presence of a large n, means that the influences of shape differences in the
ranks may be presumed to be negligible.

��� Two Other r-Equivalent Correlation Coefficients

Phi ( )

Yet another algebraically-equivalent formula for r exists for the special
case in which both variables are dichotomous. Actually, dichotomous data
are a bit of an anomaly in that they can be conceptualized as nominal
(e.g., gender), but also might be conceptualized as interval (e.g., male, ver-
sus the absence of maleness; or female, versus the absence of femaleness).

Table 5.8 presents data (n = 1,000) that are hypothetical, but corre-
spond closely to an actual study in which 22,071 physicians in a double-
blind study (i.e., neither the participants nor the people actually distribut-
ing the drugs knew what drugs were being administered) were randomly
assigned to take either aspirin or placebos daily (Steering Committee of
the Physicians’ Health Study Research Group, 1988). Figure 5.4 presents
the corresponding layout of cells described by two such dichotomous vari-
ables (i.e., aspirin/placebo and heart attack/no heart attack).
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Using the Figure 5.4 definitions, the phi coefficient can be computed as

φ = [bc – ad] / {[(a + c)(b + d)(a + b)(c + d)]0.5} (5.14)

For the Table 5.8 data, φ is

[(495)(9) – (5)(491)] / {[(5 + 9)(495 + 491)(5 + 495)(9 + 491)]0.5}
[4,455 – 2,455] / {[(5 + 9)(495 + 491)(5 + 495)(9 + 491)]0.5}

[2,000] / {[(5 + 9)(495 + 491)(5 + 495)(9 + 491)]0.5}
[2,000] / {[(14)(986)(500)(500)]0.5}
[2,000] / {[(14)(986)(250,000)]0.5}
[2,000] / {[(14)(246,500,000)]0.5}

[2,000] / {[3,451,000,000]0.5}
[2,000] / {58,745.21}

0.034

However, φ is nothing more (or less) than the Pearson r between the
two dichotomous variables. We can apply any algebraically-equivalent
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TABLE 5.8. Modeled Heart Attack Data

Heart attack

Treatment Yes No Total

Aspirin 5 495 500
Placebo 9 491 500
Total 14 986 1000

FIGURE 5.4. Layout of the Table 5.8 Aspirin Study Data



formula for r to these data and we will obtain exactly the same result pro-
duced by Equation 5.14. If you do not believe it, enter 5 pairs of {1,1}, 495
pairs of {1,0}, 9 pairs of {0,1}, and 491 pairs of {0,0} scores, for a total of
1,000 cases, into SPSS, and compute the Pearson r. You will obtain 0.034.

This 0.034 value for φ is incredibly small (φ2 = 0.1%)! Yet, the aspirin
study was discontinued once these preliminary findings emerged, because
to do otherwise would have unethically denied the control-group partici-
pants the life-saving benefits of daily aspirin.

Note that even though φ2 = 0.1%, among the physicians who had
heart attacks (n = 9), the ratio of physicians taking aspirin to the physi-
cians taking the placebo was about half (i.e., 5 / 9 = 0.56). (In the actual
study, the ratio was 104 / 189 = 0.55.) Clearly, these are dramatic differ-
ences, even though φ2 is so small. Of course, considerable credence was
placed in the actual results, because the real sample size (n = 22,071) was
so large.

This discussion hopefully makes the general point that interpreting
common variance statistics can be challenging, even for seasoned statisti-
cians (Rosenthal, 1994; Rosenthal & Rubin, 1979). Remember that a very
small coefficient of determination for a very important outcome may nev-
ertheless be quite noteworthy.

Point–Biserial Correlation (rpb)

A final algebraically-equivalent form of the Pearson r is the point–biserial
correlation coefficient (rpb). The point–biserial coefficient characterizes the
bivariate relationship between one variable that is dichotomous (e.g.,
male–female, right–wrong) and another variable that is at least intervally-
scaled.

For convenience, we will restrict the dichotomous variable to the
scores 0 and 1. Dichotomous data can always be converted to these two
values, even if the scores were not originally recorded in this manner.
Table 5.9 presents scores on one dichotomous variable (i.e., item 1: 0 =
wrong; 1 = right), total scores (i.e., number of right answers) on the
remaining items 2 through 9 (potentially 0–8), and total scores on all nine
test items (potentially 0–9).
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We will correlate the item scores with the total test scores. The result-
ing item-to-total correlation coefficient is what in item analysis is called an
uncorrected discrimination coefficient, which is computed to determine
whether the appropriate people are getting a test item right and wrong,
and the test item is performing in the desired fashion. Generally, people
with higher test scores should be disproportionately likely to get a given
item correct (i.e., item score = 1).

The algebraically-equivalent form of the Pearson r for this combina-
tion of levels of scale is

rpb = [(M1 – M0) / SDX][(n1(n0) / (n(n – 1)))0.5] (5.15)

where M1 is the mean X score of cases scoring 1 on the dichotomously-
scored item, M0 is the mean X score of cases scoring 0 on the dichoto-
mously-scored item, SDX is the standard deviation of the intervally-scaled
X scores, n1 is the number of people scoring 1, n0 is the number of people
scoring 0, and n is the total number of cases. For the correlation of the
scores on item #1 with the total scores on the remaining test items, exclud-
ing item #1, we have rpb
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TABLE 5.9. Item and Total Test Scores of Five Participants

Participant/Statistic Item #1 Items 2–9 Items 1–9

Tom 0 2 2
Dick 0 3 3
Harry 0 4 4
Sally 1 5 6
Spot 1 8 9

M1 6.50 7.50
M0 3.00 3.00
SOS 21.20 30.80
SOS / (n – 1) 5.30 7.70
SD 2.30 2.77



= [(6.5 – 3.0)/2.30][(2(3)/(5(5 – 1)))0.5]
= [(6.5 – 3.0) / 2.30][(6 / (5(5 – 1)))0.5]

= [(6.5 – 3.0) / 2.30][(6 / (5(4)))0.5]
= [(6.5 – 3.0) / 2.30][(6 / (20))0.5]

= [(6.5 – 3.0) / 2.30][(0.30)0.5]
= [(6.5 – 3.0) / 2.30][(0.548]

= [3.5 / 2.30][(0.548]
= [1.520][(0.548]

= 0.83

So, if we compute the Pearson r between scores on item #1 with total
scores on the remaining test items 2–9, using Equation 5.15, or any for-
mula for the Pearson r, we will obtain 0.83 as our result. Similarly, if we
correlate scores on item #1 with scores on all the items, including item #1,
we obtain 0.89.

The second rpb (0.89) is larger than the first rpb (0.83), because in com-
puting the second coefficient, we use the scores on item #1 both as one
variable, and as part of the total scores, thus producing a spuriously
inflated “uncorrected item discrimination coefficient.” The first r, 0.83, is
a more realistic appraisal of whether the appropriate students are getting
item #1 right and wrong, and is called a “corrected item discrimination
coefficient.”

��� Bivariate Normality

The Pearson r as a descriptive statistic tests, in part, whether both vari-
ables with at least interval scale have the same univariate shape. One, but
only one, case of two variables having identical shape arises when both
variables are univariate normal, as described in Chapter 4.

When both variables are univariate normal, they may or may not be
bivariate normal. Univariate normality of two variables is a necessary but
not sufficient condition for bivariate normality.

Bivariate normality is an important precursor for discussions of multi-
variate normality, which is beyond the scope of this book. However, many
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if not most social science datasets require multivariate analyses, so we will
briefly discuss bivariate normality to lay the foundation for your potential
future studies.

The concept of bivariate normality requires that we draw perpendicu-
lar X and Y axes on a two-dimensional surface. We also will require a ver-
tical axis drawn perpendicular to the floor and rising from the {X,Y}
intercept, which we will use as a frequency axis to count how often a given
pair of X and Y scores occurs.

To make this clear, we will use an example that is a bit silly, but that
has the irresistible appeal of being absolutely, completely concrete. Let’s
presume that you put on a coat and enter a refrigerated room with a
smooth concrete floor. You might paint on the floor an X axis (get permis-
sion first) that you mark off in inches, and a perpendicular Y axis that you
mark off in the same manner.

You will paint the X axis subject to the restriction that the X axis
passes through the mean of the the Y scores (i.e.,Y , or MY), and the Y axis
subject to the restriction that the Y axis passes through the mean of the
X scores (X , or MX). Then, you will attach the string that runs straight up
to the ceiling from the floor at the centroid (i.e., {X , Y }, or {MX,MY}). You
also mark off a string in units of 0.25″ (i.e., the exact height of a pat of
butter).

Now let’s say that you have scores of 4,000 (or 6,000) people on two
variables, X and Y, both of which are univariate normal. Then you bring
4,000 pats of butter into the refrigerated room. You put down a pat of
butter to mark the Cartesian coordinates of all 4,000 score pairs. For
example, if Colleen’s X and Y scores are both 1.0, you will place a pat of
butter to represent her score at the {1,1} coordinate. If you then deal with
Martha’s data, and her two scores also are both 1.0, you will place a pat
of butter representing her two scores directly on top of Colleen’s.

When you are done, iff the data are bivariate normal, you will have
created a giant object made of butter and shaped exactly like a very large
bell. Iff your data are bivariate normal, your butter bell will have two
properties.

First, iff the data are bivariate normal, and you cut through the butter,
using a very hot, very large knife, along the string that runs from the floor
to the ceiling, your cut will create a univariate normal distribution. Indeed,
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if r ≠ –1 and r ≠ +1, and if you cut along the string at any of infinitely
many locations, every cut will produce a univariate normal distribution.

Second, iff the data are bivariate normal, and you draw on the floor
around the pats of butter, the outline will be a circle, an ellipse, or a line. If
you use your very hot, very large knife to cut through the butter, doing so
perfectly parallel to the floor, you will create a ring concentric to your
tracing on the floor. Each concentric ring will narrow as you slice closer to
the ceiling, until you cut at the very apex of your butter bell.

Some Key Concepts

Bivariate relationship statistics quantify the degrees of relationships
between variables. The Pearson r presumes that both variables are at
least intervally-scaled. However, with respect to the common variance
of the two variables, r is not intervally-scaled, but r2 is. The Pearson r
is a score-world statistic, whereas the coefficient of determination is
an area-world statistic. The Pearson r asks two questions:

1. How well do the two variables order the cases in exactly the
same (or the opposite) order?

2. To what extent do the two variables have the same shape?

Spearman’s ρ only asks the second question. The Spearman ρ
(unlike r) can be computed when both variables are ordinally-scaled.
Rho also can be computed when either variable, or both, are
intervally- or ratio-scaled, but the researcher wishes to address only
this second question.

Phi (φ) and point–biserial correlation (rpb) are algebraically-equiv-
alent alternative formulas for computing r when the variables are (a)
both dichotomous or (b) one variable is dichotomous and the other
variable is at least intervally-scaled, respectively. However, the
Pearson r formula may also be applied in these cases, will yield identi-
cal results, and the results still may be correctly labeled as φ and rpb.
Regardless of how we obtain these results, we would typically call the
results φ and rpb, to call attention to the scaling of the variables.
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��� Reflection Problems ���

1. Consider that the numerator of the covariance formula, which in turn is

the numerator of the r formula, is (Σ(Xi – MX)(Yi – MY)). If you substitute

mean values for missing data, what tends to be the effect of the esti-

mated covariance and r values after imputation, as against the corre-

sponding values when cases with missing data are instead omitted from

the analysis?

2. Reconsider the butter bell example, limiting the discussion to bivariate

normal data. First, if (a) r = 0 and (b) SDX = SDY, will the tracing on the

floor of the perimeter of the bell create a circle, an ellipse, or a line? Will

every cut through the butter bell along the string be only normal, or will

every cut univariate distribution be both univariate normal and exactly

match every other cut?

Second, if (a) r = 0 and (b) both variables are z scores, will every one

of the infinitely many possible cuts along the string yield nonstandard nor-

mal distributions, or standard normal distributions?

Third, if r = –1 or +1, will the tracing of the perimeter of the bell on

the floor yield a circle, an ellipse, or a line? How many cuts through the

bell along the string will yield a univariate normal distribution?

3. Using the data and the additive and multiplicative constants in Reflection

Problem 3 in Chapter 2, successively compute the product–moment cor-

relations for Y with X1, X2, and X3 both before and after the application

of the constants. What rule can we formulate to express the effects on

the Pearson r of additive constants? What rule can we formulate to

express the effects on r of multiplicative constants? When will a multipli-

cative constant not change the value of the Pearson r? When will a multi-

plicative constant change the value of r?

Draw separate scattergrams for each original set of score pairs, and

draw your best “guesstimate” of the line of best fit, using a blue or black

5. Bivariate Relationships 131



pen. Within the same plots, draw the asterisks after a given constant has

been applied, and the “guesstimated” line of best fit, using a red or green

pen. How do the constants affect the locations of the asterisks and of the

lines of best fit? You can check your drawings by using the SPSS GRAPH

menu, clicking on INTERACTIVE and then on SCATTERPLOT. In the FIT menu,

for METHOD, select REGRESSION to obtain the line of best fit within a given

scattergram.

4. What are the Pearson r‘s and the Spearman rho’s between all possible

variable pairs for the Appendix data? How can this be, given their diver-

gent means and SDs?
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6

Statistical
Significance

A
s explained in Chapter 1, when we characterize aspects of data
that constitute a sample, we are computing statistics. When we
characterize features of data that constitute what we deem a
population, we are computing parameters. In subsequent chap-

ters, we learned various ways to compute descriptive statistics to charac-
terize location (or central tendency), dispersion (or “spreadoutness”),
shape, and bivariate relationship.

It has also been previously noted that researchers almost always pre-
sume that their data represent samples, rather than populations, and try to
generalize their descriptive results to much larger populations (e.g., all
third graders, all adults with depression now or ever in the future). This
impulse is observed even when the data are from samples of convenience
(e.g., available sophomores on the local campus), rather than from ran-
dom samples drawn from an identified, specific population.

Characterizing data as creating a sample inescapably implies the exis-
tence of a larger population from which the sample data were obtained. In
the presence of samples, researchers often want to know whether sample
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descriptive statistics accurately approximate the related population
parameters. For example, does the statistic median approximate the
parameter median?

There is no way to know for certain how accurate our descriptive sta-
tistics are. Indeed, as long as we are working with samples, rather than
with populations, our particular sample will always imperfectly represent
the data in the full population, at least to some degree.

Given descriptive statistics for imperfect sample data, researchers still
seek ways to evaluate the noteworthiness of their data characterizations.
Researchers may address as many as three questions when evaluating their
sample results. Today, researchers typically use at least two of these evalu-
ations when interpreting their results.

First, researchers can evaluate the statistical significance of their statis-
tics (Cohen, 1994; Thompson, 1996). This evaluation requires an inferen-
tial linkage of sample and population data and thus is also referred to as
inferential statistics. Inferential statistics always implies the presence of
sample data. In inferential statistics, we go beyond our descriptive statis-
tics by calculating the estimated probability (i.e., pCALCULATED) of the sample
statistics’ occurrence, assuming the sample was drawn from a given popu-
lation. These p values range from 0 to 1 (think of these as percentages,
ranging from 0% to 100%). Statistics with smaller pCALCULATED values are
relatively unlikely (e.g., pCALCULATED = 0.02 = 2%), whereas statistics with
larger pCALCULATED values (e.g., 0.97, or 97%) are estimated to have more
likely been drawn from the population we are assuming.

Second, researchers can evaluate the practical significance of their sta-
tistics (Kirk, 1996; Thompson, in press; Vacha-Haase & Thompson,
2004). Statistical significance yields a mathematical estimate of the proba-
bility of statistics. But the computation of pCALCULATED values does not
incorporate any information about the personal values of the researcher;
therefore, p values inherently cannot contain information about result
import and cannot inform value judgments about results. But other statis-
tics can be computed to help evaluate the practical significance of results.
Practical significance focuses on how much difference an intervention
makes or how related various variables are (e.g., how much longer, on
average, will you tend to live if you do not smoke; how related are differ-
ent amounts of obesity to various blood pressures).

Third, iff the research involves a dependent variable for which there
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are recognized diagnostic cut scores (e.g., you are considered to have high
blood pressure if your diastolic pressure is greater than 90), researchers
can also evaluate the clinical significance of the statistics (T. C. Campbell,
2005; Kendall, 1999; Kendall, Marrs-Garcia, Nath, & Sheldrick, 1999).
Clinical significance focuses on estimating the extent to which an interven-
tion given to participants who initially met diagnostic criteria no longer do
so (and thus do not require further intervention) following treatment. For
example, when clinically depressed people are randomly assigned to talk
therapy or to a control condition, what percentages of the participants in
talk therapy versus the control condition are no longer depressed at the
end of the intervention? Two studies with identical statistical significance,
and identical practical significance, may nevertheless differ with respect to
clinical significance.

All three types of significance require calculations and yield numerical
results. For the last half of the twentieth century, statistical significance
dominated investigators’ evaluations of research results (Hubbard &
Ryan, 2000). Although ways of quantifying practical significance have
been available for decades (Huberty, 2002), during roughly the past dozen
years scholars have moved practical significance toward the forefront of
their evaluations of research results (e.g., Wilkinson & APA Task Force on
Statistical Inference, 1999).

In this and the following chapter, we will focus on statistical and prac-
tical significance, respectively, because these estimates can be computed
for studies even when diagnostic criteria are not relevant. Readers inter-
ested in pursuing the issues involved in evaluating clinical significance are
directed elsewhere (e.g., T. C. Campbell, 2005; Kendall, 1999).

��� Sampling Distributions

Previously we have learned that the population distribution consists of the
scores of the N entities (e.g., people, laboratory mice) of interest to the
researcher, regarding whom the researcher wishes to generalize. The sam-
ple distribution also consists of scores, but only a subsample of n scores
from the population.

Statistical significance testing estimates the calculated probability (i.e.,
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pCALCULATED) of sample statistics (e.g., for 10 women the median IQ is 102,
whereas for 10 men the median IQ is 98). The estimation of the probabil-
ity of our sample results (i.e., the pCALCULATED for our statistic medians of
102 and 98, given nWOMEN = 10 and nMEN = 10) requires the use of a third
distribution, called the sampling distribution. The sampling distribution
consists not of scores, but instead consists of statistics (e.g., the median)
computed from repeated sampling from the population, each at the exact
sample size(s) in our actual sample.

Heuristic Example

A heuristic example will clarify the distinctions among (a) the population
distribution of N scores, (b) the sample distribution of n scores, and (c) the
sampling distribution of statistics. Even though “sample” and the first
word of “sampling distribution” are similar, the two distributions are dis-
tinct. Do not be tricked because the terms include a similar word, and
therefore incorrectly confuse the sample with the sampling distribution, or
vice versa.

We’ll draw on football for the heuristic example. In the early 1980s,
the New Orleans Saints not only were playing terribly, losing virtually
every game, but the Saints also lost virtually every coin flip at the start of
every game.

Let’s imagine that at the start of one game, just as the referee was
about to flip the coin to determine who would kick off, the Saints’ captain
said to the referee, “Wait a minute. I don’t think this coin is a fair coin. I
want to test whether this coin is fair.”

Now the referees in the National Football League are actually pretty
bright, well-educated people. Included among referees are lawyers and
doctors and others with graduate degrees. Such a referee might then
respond,

Well, we could determine for certain if this coin was a fair coin, if we
knew the population of all possible flips for this particular coin. If we
flipped this coin infinitely many times, there would be an exactly
equal number of heads and tails for a fair coin.

But it will take infinitely long to flip this coin infinitely many times.
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We’re going to make these 80,000 fans here in the stadium mighty
mad to have to wait infinitely long for the game to start, not to men-
tion some mighty mad television viewers and television executives. So
we can’t reasonably create this population. Doing so would be
impractical.

The Saints’ captain might then respond, “Well, what we could do is
create a sample, the number of heads obtained over n = 10 flips. If we get
approximately 5 heads, that result would be consistent with a conclusion
that the coin is fair. If we get either approximately zero, or approximately
10 heads, the result would be improbable for a set of 10 flips sampled for
a fair coin. Based on only 10 flips, we won’t know for certain whether our
coin is fair, but at least we will have some empirical evidence bearing upon
the fairness of the coin.”

However, the referee might then object, “How will we know where to
draw the boundary for deciding whether the coin is fair or unfair?” And
the Saints’ captain might then say, “Let’s estimate the probability of our
sampled number of heads out of 10 flips, assuming that the results were
sampled from a population of flips for a fair coin. To reject our coin as not
being fair, let’s require that our coin produce the number of heads that is
5% or less likely to occur for a coin sampled from a population involving
results for a fair coin. We will call this cutoff value for deciding coin fair-
ness, which we pick subjectively rather than mathematically, ‘pCRITICAL.’ ”

Now the referee might say, “But how can we obtain the pCALCULATED

value for the results for our coin, which we will then compare against our
pCRITICAL value of 0.05 (i.e., 5%) or less?” And the captain might respond,
“Let’s approximate a sampling distribution for a fair coin flipped 10
times. Let’s assume that all 80,000 fans in the audience have a fair coin on
their persons. We will ask every fan to flip a coin 10 times, and then we
will create a distribution indicating how many heads resulted for each of
the 80,000 sets of coin flips.”

Table 6.1 presents the resulting empirically-approximated sampling
distribution. Note that although 0 or 10 heads in a set of 10 flips are both
very rare, in 80,000 sets of flips of a fair coin, 78 sets of 0 heads, and 78
sets of 10 heads will nevertheless result even for a fair coin.

Simultaneous to the creation of the sampling distribution via the
80,000 fans, the referee creates the sample by flipping the coin that is
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being evaluated 10 times. Let’s say that the result is 2 heads. This is not
the expected result, given 10 flips and the presumption that the coin is fair.
The presumptive most-likely outcome is that there will be 5 heads. How-
ever, even for a fair coin, flips yielding 2 (and indeed even 0 or 10) heads
out of 10 may occur, as reflected in Table 6.1.

How can we use the Table 6.1 sampling distribution to obtain a
pCALCULATED value for our sample result of two heads, which we can then
compare with our subjectively (i.e., nonmathematically) derived pCRITICAL

value of 5% (or 0.05)? The sampling distribution (or some related distri-
bution based on the sampling distribution) is used to obtain the required
pCALCULATED values associated with our sample statistics.

The Table 6.1 sampling distribution allows us to make statements
such as:

1. The probability of obtaining 0 heads in 10 flips with a fair coin is
0.1%.

2. The probability of obtaining 1 or fewer heads in 10 flips of a fair
coin is 1.1%.

3. The probability of obtaining 2 or fewer heads in 10 flips of a fair
coin is 5.4%.

138 FOUNDATIONS OF BEHAVIORAL STATISTICS

TABLE 6.1. Empirically-Derived Sampling Distribution

Number of heads Number of samples Percentage
Cumulative % from
Sample Space Ends

0 78 0.10% 0.1%
1 781 0.98% 1.1%
2 3,516 4.40% 5.4%
3 9,375 11.72%
4 16,406 20.51%
5 19,688 24.61%
6 16,406 20.51%
7 9,375 11.72%
8 3,516 4.40% 5.4%
9 781 0.98% 1.1%

10 78 0.10% 0.1%

Total 80,000 100.00%

Note. The cumulative percentages are reported here only for the three results from the two
extremes of the sample space.



4. The probability of obtaining 9 or more heads in 10 flips of a fair
coin is 1.1%.

5. The probability of obtaining 10 heads in 10 flips of a fair coin is
0.1%.

To use the pCALCULATED values derived from our sampling distribution,
we must first think further about our 5% pCRITICAL value. We want to reject
the presumption that the referee’s coin is fair if the referee’s coin gets either
wildly too many heads or wildly too few heads. This means that we need
to conduct what is called a two-tailed test by splitting our 5% pCRITICAL

value to cover both extreme eventualities.
For two-tailed tests, we typically divide our pCRITICAL value by 2 to cre-

ate equal-sized regions of rejection in both tails of the sampling distribu-
tion (0.05 / 2 = 0.025 = 2.5%). So here we will reject the presumption that
the referee’s coin is fair if the number of obtained heads has a calculated
probability less than 2.5%, regardless of whether we obtain too few or too
many heads. According to the sampling distribution in Table 6.1, only a
sample statistic involving either 0 heads or 1 head is sufficiently rare for us
to conclude that the coin is probably unfair (i.e., 1.1% < 2.5%). Con-
versely, at the other extreme, only a sample statistic involving either 9 or
10 heads is sufficiently rare, given our subjectively selected pCRITICAL, for us
to conclude that the coin is probably unfair (i.e., 1.1% < 2.5%).

In this example, which involves discrete outcomes (i.e., only integer
numbers of heads), the rejection region constitutes 2.2% (i.e., 1.1% +
1.1%) of the sampling distribution rather than exactly 5%. But for most
hypotheses involving other outcomes (e.g., medians, SDs, coefficients of
kurtosis) which are real numbers (numbers with values to the right of the
decimal) rather than integers, we can create rejection regions that exactly
match either pCRITICAL or pCRITICAL / 2.

So, for the present example, our statistic of two heads is somewhat
unlikely to come from a population created by a fair coin. However, the
statistic is not sufficiently unlikely, given our subjective a priori selection
of a cutoff of pCRITICAL = 0.05, to decide that the referee’s coin is unfair.

Complete mastery of the full mechanics of our example is not neces-
sary. Here are the “take-home” messages:

1. Samples and populations and sampling distributions are three dif-
ferent distributions.

6. Statistical Significance 139



2. Samples and populations are distributions of scores for different
cases (e.g., people, lab rats); sampling distributions are distribu-
tions of statistics for different samples, each involving the same n as
the actual sample.

3. When we perform inferential statistics, we subjectively select a
pCRITICAL cutoff value, before we collect our sample data, that is later
used to evaluate the pCALCULATED value.

4. The obtained sample statistics for our actual sample are plugged
into the relevant sampling distributions to obtain the pCALCULATED

value of our sample statistics.

Finite Sampling Distributions

The number of samples drawn for the sampling distribution from a given
population is a function of the population size, and the sample size. The
number of such different samples (C) for a population of size N and a
sample of size n, called combinations, is

NCn = N! / [n!(N – n)!] (6.1)

If the population is finite in size, the sampling distribution itself
involves a finite number of samples. For example, for a finite population
of scores for N = 20 people, presume that we wish to evaluate a sample
mean for n = 3 people. Here the problem is manageable, given the rela-
tively small population and sample sizes. The number of statistics creating
this sampling distribution is

NCn = N!
n!(N – n)!

20!
3!(20 – 3)!

20!
3!(17)!

20×19×18×17×16×15×14×13×12×11×10×9×8×7×6×5×4×3×2
3×2×(17×16×15×14×13×12×11×10×9×8×7×6×5×4×3×2)
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2.433E + 18
6 × 3.557E + 14

2.433E + 18
2.134E + 15

= 1,140

Table 6.2 presents a hypothetical population, the scores of 20 people.
As reported in Table 6.2, for these data, µ = 500.00 and σ = 97.73.

Table 6.3 presents the first 15 and the last 10 of the 1,140 samples and
statistic means for samples of n = 3. The full sampling distribution takes
quite a few pages to present, and so is not presented here in its entirety.
Although the full sampling distribution for this situation is tedious to com-
pute, and boring to read, this sampling distribution is finite, and could be
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TABLE 6.2. Heuristic Dataset 3,
Defining a Population of N = 20 Scores

ID X

1 430
2 431
3 432
4 433
5 435
6 438
7 442
8 446
9 451

10 457
11 465
12 474
13 484
14 496
15 512
16 530
17 560
18 595
19 649
20 840

µ 500.00
σ 97.73



computed by anyone wanting to do so. Figure 6.1 presents the full sampling
distribution of 1,140 estimates of the mean based on samples of size n = 3
from the Table 6.2 population of N = 20 scores. The figure also portrays the
normal curve given the mean and SD of these data.

��� Hypothesis Testing

Social scientists have traditionally applied inferential statistics for the pur-
pose of making decisions about whether their prior expectations were
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TABLE 6.3. The Sampling Distribution for the Mean of n = 3 Scores
Drawn from the Table 6.2 Population of N = 20 Scores

Cases

Sample 1 2 2 X1 X2 X3 Mean

1 1 2 3 430 431 432 431.00
2 1 2 4 430 431 433 431.33
3 1 2 5 430 431 435 432.00
4 1 2 6 430 431 438 433.00
5 1 2 7 430 431 442 434.33
6 1 2 8 430 431 446 435.67
7 1 2 9 430 431 451 437.33
8 1 2 10 430 431 457 439.33
9 1 2 11 430 431 465 442.00

10 1 2 12 430 431 474 445.00
11 1 2 13 430 431 484 448.33
12 1 2 14 430 431 496 452.33
13 1 2 15 430 431 512 457.67
14 1 2 16 430 431 530 463.67
15 1 2 17 430 431 560 473.67
. . . .
1131 16 17 18 530 560 595 561.67
1132 16 17 19 530 560 649 579.67
1133 16 17 20 530 560 840 643.33
1134 16 18 19 530 595 649 591.33
1135 16 18 20 530 595 840 655.00
1136 16 19 20 530 649 840 673.00
1137 17 18 19 560 595 649 601.33
1138 17 18 20 560 595 840 665.00
1139 17 19 20 560 649 840 683.00
1140 18 19 20 595 649 840 694.67



right or wrong. These prior expectations are expressed as research hypoth-
eses (e.g., “Adults who take a daily vitamin pill are less likely to develop
cancer than adults who do not”).

However, the hypotheses that are actually tested in inferential statis-
tics are called null hypotheses. In practice, null hypotheses are almost
always expressed as what Cohen (1994) called “nil” null hypotheses (i.e.,
hypotheses predicting zero differences, or zero relationship).

Here are some illustrative (nil) null hypotheses:
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FIGURE 6.1. Graphical presentation of the sampling distribution for the mean of n = 3
scores drawn from the population of N = 20 scores in Table 6.2.



1. The median IQ of men equals the median IQ of women (or H0:
MdnMEN = MdnWOMEN, or H0: MdnMEN – MdnWOMEN = 0).

2. The standard deviations of IQ scores of right-handed, left-handed,
and ambidextrous adults are all equal (or H0: SDRIGHT-HANDED =
SDLEFT-HANDED = SDAMBIDEXTROUS).

3. The Pearson r between amount of time spent in study and class
grades is zero (rXY = 0, or equivalently, rXY

2 = 0).

The null hypothesis expresses expectations for parameters (i.e., for the
population). We ultimately wish to determine the probability (i.e.,
pCALCULATED) that our sample statistics are consistent with the sample having
been drawn from populations in which the null hypotheses are exactly
true.

Frequently, null hypotheses predict an outcome that is the opposite of
the research hypotheses (i.e., what we want or expect to happen). For
example, we might want (and expect) to reject the null hypothesis: “The
mean longevity of AIDS patients randomly assigned to take a new drug
equals the mean longevity of AIDS patients randomly assigned to take a
placebo medication.” But in other cases, we may not want to reject the
null hypothesis: “The proportion of side effects occurring with new AIDS
drug equals the proportion of side effects occurring in AIDS patients tak-
ing a placebo medication.”

It is the content, expressing an expectation of no difference or no rela-
tion, that makes a hypothesis null. The researcher’s expectations and
hopes are not the basis for this determination.

The inferential statistics process of making decisions about whether to
reject or not reject null hypotheses is called null hypothesis statistical sig-
nificance testing (NHSST) or sometimes merely statistical significance test-
ing. Mulaik, Raju, and Harshman (1997) and Huberty (1999) provide
brief histories of the evolution of this statistical logic.

However, when we decide whether or not to reject the null hypothe-
sis, based on our statistics, once we have our sample data, we can conceiv-
ably make an incorrect decision. We can never be certain we avoided an
erroneous decision, unless we collect data from the entire population, and
thus are no longer invoking inferential statistics.

It is always conceivable that we can draw an unusual, fluky sample
from a population where the null is true, and the aberrant sample is so
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unlikely that we (erroneously) decide to reject our null hypothesis. In our
football example, if the team captain flips the referee’s coin 10 times and
obtains 0 heads, at our pCRITICAL we would reject the null hypothesis that
the coin is not different from a fair coin.

But the referee’s coin might actually be perfectly fair, even though the
coin produced a fluky sample. Whenever we are dealing with inference,
and probability, because we are using sample rather than population data,
there is always the possibility of making an inferential error. Short of col-
lecting population data, all we can do is attempt to minimize (but never
eliminate) the probabilities of making erroneous decisions.

Two errors are possible whenever we perform statistical significance
testing. In recognition of their importance, these two errors are given
proper names (i.e., they are capitalized and enumerated with Roman
numerals). A Type I error occurs when we decide to reject a null hypothe-
sis that in truth accurately describes the population from which our sam-
ple was derived. A Type II error occurs when we decide to not reject a null
hypothesis that in truth does not accurately describe the population from
which our sample was derived.

In statistical significance testing, we can never be certain whether or
not we are making a Type I or a Type II error. However, we can determine
the probabilities of these two errors. Like all probabilities, these two prob-
abilities range between 0 and 1. And, unless we are perverse, evil scien-
tists, we want the probabilities of making decision errors to be small (i.e.,
close to zero). These errors can never be zero, unless we have population
data, in which case we are not performing inferential statistics. But we can
take steps to ensure that the probabilities are small.

The probability of a Type I error is represented as α, or synonymously
as pCRITICAL. We obtain this probability, not through calculation, but
instead merely by subjective judgment about what is an acceptable proba-
bility of a Type I error, given the context of our study, as was done in our
football coin example.

Note that this probability, α, has nothing to do with the score reliabil-
ity coefficient called Cronbach’s alpha (Thompson, 2003). Some Greek
letters are used to represent multiple things, partly just to be gratuitously
confusing, and to rub salt in the wounds of other Greek letters that
unfairly are not used as symbols at all, or only rarely.
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Conventionally, we set α (or pCRITICAL) at 0.05, 0.01, or 0.001. But
there is no reason—especially given modern computers and software,
which perform the necessary related calculations—that precludes our use
of any other values, such as 0.029, 0.04, or whatever value between 0 and
1 we prefer. Because the determination is subjective, wrong decisions are
impossible as long as the selected value falls in the mathematically plausi-
ble range of a probability (i.e., 0 to 1), and is what we deem reasonably
small (i.e., reasonably close to 0).

We set α before we collect our sample data and compute our statistics.
If the consequences of an error are quite serious (e.g., an erroneous deci-
sion about a drug might result in deaths), we will set α smaller than we
would in studies with less serious implications. But because human values
drive this subjective decision, two researchers testing the same null
hypothesis might reasonably select different values for α, simply because
they have different personal priorities or human values.

The probability of a Type II error is β. Again, the Greek letter β is
used for multiple purposes, and the probability β has nothing to do with
beta weights, which we will discuss in our coverage of multiple regression,
beginning in Chapter 8.

Figure 6.2 clarifies how we perform tests of statistical significance. We
pick α (i.e., pCRITICAL) before we collect the sample data. Next, we collect
sample data and compute our statistics. We then somehow obtain a sam-
pling distribution, or some distribution that is a function of the sampling
distribution, from which we can determine the pCALCULATED of our statistics.

When an author of a journal article says that “(p < 0.05),” the author
is telling you that the study α (or pCRITICAL) was whatever number is to the

146 FOUNDATIONS OF BEHAVIORAL STATISTICS

FIGURE 6.2. Contingency table for NHSST



right of this expression involving either “<” or “>” (i.e., here α = 0.05). As
another example, if the author reported that for the study’s sample statis-
tics “(p > 0.10),” this author used an α of 0.10.

When alpha is reported in this manner, the pCALCULATED is not being
specifically reported. But if the author says that “(p < 0.05),” we do at
least know that the pCALCULATED value was smaller than 0.05, or 5%. If a p
value is instead reported with an equal sign, such as “(p = 0.047),” the
author is instead telling you the specific value of pCALCULATED.

As the decision rule in Figure 6.2 says, if pCALCULATED is less than
pCRITICAL, we therefore make the decision “reject the null hypothesis.” On
the other hand, if pCALCULATED is greater than pCRITICAL, we therefore make
the decision to “not reject the null hypothesis.” Theoretically, because
these probabilities are real (i.e., noninteger) numbers, the possibility of the
two numbers being equal is infinitely small, and need not concern us.

The decision to reject the null can be communicated by saying, “The
results were statistically significant.” All this expression means is that you
rejected the null hypothesis, because the sample statistics were very
unlikely.

Obtaining a “statistically significant” result does not mean that the
results are important, or valuable (or unimportant, or unvaluable). The
decision is merely a mathematical decision that indicates (and only indi-
cates) that the statistics were unlikely under a premise that the sample
came from a population exactly described by the null hypothesis.

Similarly, obtaining a “statistically nonsignificant” result does not
mean that the results are unimportant, or unvaluable (or important, or
valuable). For example, if you are investigating the side effects of a power-
ful new cancer treatment, and do not reject a null that side effects equal
zero, that could be very important. Conversely, if you were investigating
whether hospital patients prefer nurses to wear chartreuse versus lavender
uniforms, the results might not be valuable, if you don’t care about hospi-
tal patients, or if you don’t care about what uniforms nurses wear.

The characterization of decisions to reject or not reject as “statistically
significant” or “not statistically significant” is one of the most damaging
language choices in the history of statistics (Thompson, 1996). Confusion
arises because the common meaning of “significant” in nontechnical con-
versation as being synonymous with “important” has no relevance what-
soever to the use of this same language in inferential statistics.
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Some researchers telegraphically describe results for which H0 was
rejected as being “significant,” rather than “statistically significant.”
Using the full phrase, “statistically significant,” has appeal because at least
some readers will recognize that the use of the two-word phrase has a
meaning completely distinct from the use alone of the single word, “signif-
icant.” Thus, always say results were “statistically significant” or achieved
“statistical significance,” rather than describing results as “significant” or
as achieving “significance.”

Relationships among Errors

Figure 6.2 is also useful in clarifying other features of NHSST. Note that
once a decision is made about the null, you are either in the top two boxes,
if you rejected, or you are in the bottom two boxes, if you failed to reject.
Consequently, the following relationships are implied by Figure 6.2:

1. You cannot make both a Type I and Type II error on a given
hypothesis test.

2. Once you reject, you could not have made a Type II error, and Type
II error is irrelevant.

3. Once you fail to reject, you could not have made a Type I error, and
Type I error is irrelevant.

“Accepting” the Null

When we are in the bottom row of Figure 6.2, we say that we “failed to
reject” or “did not reject” instead of saying that we “accepted the null
hypothesis.” Another heuristic example may be helpful in explaining why.

I taught at the University of New Orleans for 11 years, thus fulfilling a
lifelong dream to live and work in that city, now ravaged by Hurricane
Katrina. The present heuristic (and entirely fictitious) example draws on
this experience.

Roughly 6 weeks before Easter Sunday there is a celebration in New
Orleans called Mardi Gras, or Fat Tuesday. On Mardi Gras and the days
leading up to Mardi Gras, there are numerous parades throughout the
city. The people riding on the garish floats are dressed in costume. Other
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people line the streets and greet the passing riders with the traditional sal-
utation, “Throw me something, Mister!” When the riders are impressed
with the request, they respond by throwing some inexpensive plastic
beads, or a plastic cup, or in some cases, intriguing underwear.

On the whole, these parades are family-centered events through much
of the city, and it is the children who are showered with “throws.” But in
the French Quarter, the celebration often takes on a different hue. In
essence, all laws are suspended in the French Quarter on Mardi Gras. The
only exception involves laws against violence. If you are violent in any
way, you will be promptly arrested and escorted to an area near Canal
Street that is fenced off with metal barricades. Over this holding area and
attached to the nearby building is a billboard-sized reproduction of the
Monopoly card that says, “Go directly to jail. Do not pass Go. Do not col-
lect $200.” This is where you will be held until transport to the real jail
can be organized.

But nonviolent celebrants roaming the French Quarter may notice a
few people (actually, hoards) who are imbibing somewhat excessively.
Many of these people will be masked, many will be costumed, and some
will be walking the streets virtually naked. But being virtually naked is not
considered being violent.

Let’s say I wake up the day after Mardi Gras (i.e., Ash Wednesday),
naked in an alley. Perhaps I have enjoyed myself too much and I am uncer-
tain whether I am in New Orleans, or whether some of my friends have
maliciously transported me to another city while I was unconscious. I am
concerned, because the consequences of walking around naked on Ash
Wednesday are probably different in New Orleans than elsewhere. In New
Orleans, people may merely laugh, and offer a loan of clothing and other
assistance. Elsewhere, I may be charged with a crime and get taken to jail.

Let’s say I look down my alley and see a sign alternating between dis-
playing the time, which is noon, and the temperature. The temperature I
observe is my sample statistic. This information may be useful in testing
the null hypothesis that I am in a city no different than New Orleans.

If the sign reports that it is 32°F, I will be quite cold, and unhappy to
be naked in an alley. But I will nonetheless be empowered to make a prob-
ability statement about the null hypothesis that I am in New Orleans.

I have some idea what the sampling distribution is for temperatures at
noon the day after Mardi Gras in New Orleans. Mardi Gras occurs in Feb-
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ruary or March. Temperatures this cold are rare. I would conclude that I
may be in New Orleans, but that this is highly unlikely. I would reject my
null hypothesis.

The same thing would occur if the temperature was 95°. I may be in
New Orleans, but the probability that I am, based on my notion of this
sampling distribution, would be quite small. I would reject under these cir-
cumstances also.

However, let’s say the temperature was 65°. This is probably a fairly
common temperature in New Orleans the day after Mardi Gras. This sam-
ple statistic is fairly likely under the assumption that I am in New Orleans.
Now I would not reject the null that I am in New Orleans, because my sta-
tistic has a reasonably large pCALCULATED.

But have I proven that I am in New Orleans? Do I have evidence for
the truth of the null? Or do I instead merely have evidence that is consis-
tent with my null, but that may also be consistent with other null hypothe-
ses? For example, maybe my malicious friends have transported me to
Mobile, Alabama, or to Jackson, Mississippi. If they are particularly per-
verse, perhaps they have transported me to College Station, Texas!

In other words, when we reject the null, we have indications that our
particular null hypothesis is false. The indications involve probability of
falseness, never certainty. But when we fail to reject, we have not proven
that our particular null hypothesis is the correct null hypothesis. Our sam-
ple result, although consistent with our particular null, is nevertheless
ambiguous because other null hypotheses—in particular, non-nil nulls—
may also be consistent with our sample result. Thus, it is appropriate to
say that we have “failed to reject the null hypothesis,” but it is inappropri-
ate to say that we have “accepted” or “proven” our null hypothesis.

��� Properties of Sampling Distributions

For a finite population, we can compute a sampling distribution for any
statistic (e.g., the median, the coefficient of skewness, Spearman’s ρ).
There will be a different sampling distribution for different sample sizes,
even for a given statistic. There will also be a different sampling distribu-
tion for every statistic, even for fixed n.
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The sampling distributions of different statistics for a fixed n from a
population may themselves have different locations, dispersions, or
shapes. For example, the mean of the sampling distributions for n = 5 for
all possible sample medians may be 57.5, whereas the mean of the sam-
pling distributions for n = 5 for all possible sample coefficients of skew-
ness may be 0.0.

Some properties apply to all sampling distributions. Other properties
apply to sampling distributions for certain statistics (e.g., the mean), but
not to sampling distributions for other statistics (e.g., Pearson’s r).

Table 6.4 presents a finite population consisting of N = 6 scores. For
the purposes of formulating features that apply to the sampling distribu-
tions of all statistics, here we will arbitrarily focus on the sampling distri-
butions for the mean, and compute the sampling distributions for ns of 1,
2, and 3.

Table 6.5 presents (a) all the possible samples of scores, and the
related statistic means, and (b) descriptive statistics for the three sampling
distributions. Of course, if we can compute descriptive characterizations
of samples (called statistics), and of populations (called parameters), there
is no impediment to also using these formulas to characterize the data in
sampling distributions (i.e., to computing statistics of statistics).

The first sampling distribution of the mean, for n = 1, is heuristically
very interesting. From a population of N = 6 scores, there are six possible
samples at n = 1. Sampling distributions are always distributions of scores.
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TABLE 6.4. Hypothetical Population (N = 6)

Case/parameter Xi

1 1
2 2
3 3
4 4
5 5
6 5

µ 3.33
σ 1.63
Skewness –0.38
Kurtosis –1.48



However, in this exceptional case, this particular sampling distribution isHowever, in this exceptional case, this particular sampling distribution is
a distribution of both statistics and scores, because at n = 1 the mean of
the sample also equals the only score in the given sample. Notice that the
scores and all of the characterizations (i.e., location, dispersion, shape) of
both the population and the sampling distribution all exactly match for
this sampling distribution.

For the sample size of n = 2, we can apply the following formula to
determine the number of unique pairwise combinations of six things
drawn two at a time:

CPW = [N(N – 1)] / 2 (6.2)
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TABLE 6.5. Sampling Distributions for the Mean
for Three Sample Sizes (n = 1, n = 2, and n = 3)

n = 1 n = 2 n = 3

Sample result X1 M X1 X2 M X1 X2 X2 M

1 1 1.00 1 2 1.50 1 2 3 2.00
2 2 2.00 1 3 2.00 1 2 4 2.33
3 3 3.00 1 4 2.50 1 2 5 2.67
4 4 4.00 1 5 3.00 1 2 5 2.67
5 5 5.00 1 5 3.00 1 3 4 2.67
6 5 5.00 2 3 2.50 1 3 5 3.00
7 2 4 3.00 1 3 5 3.00
8 2 5 3.50 1 4 5 3.33
9 2 5 3.50 1 4 5 3.33

10 3 4 3.50 1 5 5 3.67
11 3 5 4.00 2 3 4 3.00
12 3 5 4.00 2 3 5 3.33
13 4 5 4.50 2 3 5 3.33
14 4 5 4.50 2 4 5 3.67
15 5 5 5.00 2 4 5 3.67
16 2 5 5 4.00
17 3 4 5 4.00
18 3 4 5 4.00
19 3 5 5 4.33
20 4 5 5 4.67

M 3.33 3.33 3.33
SD 1.63 0.98 0.68
Skewness –0.38 –0.12 0.00
Kurtosis –1.48 –0.46 –0.38



By applying the equation, we see that there are 15 different samples of size
n = 2 that can be drawn from our population of N = 6 people: [n * (n –
1)] / 2 = [6 * (6 – 1)] / 2 = [6 * 5] / 2 = 30 / 2 = 15.

By the way, Equation 6.2 applies when determining the number of
pairwise combinations for any situation. For example, the equation also
(correctly) suggests that 15 unique Pearson r coefficients can be computed
in a study involving six intervally-scaled variables.

Notice that the dispersion of the sampling distribution has gotten
smaller (i.e., changed from sampling distribution SD = 1.63 to 0.98). This
reflects the fact that when we use samples to estimate parameters, we can
obtain atypical or fluky samples from the population, even if the samples
are drawn randomly. Indeed, every possible sample, as well as the related
statistic, is equally likely to be drawn in a given instance.

But as the sample size increases toward the population size, fluky sam-
ples are less and less likely for each increase in sample size. The sample
statistics bounce around less and, as a set (or sampling distribution),
become more homogeneous. This leads us to our first generalization about
all sampling distributions:

1. For all sampling distributions, the standard deviation of the sam-
pling distribution gets smaller as sample size increases.

We can see this dynamic reflected in the sampling distribution for the
mean for n = 3. Using Equation 6.1, we can determine how many different
samples of size n = 3 can be drawn from a population of N = 6. We have
(6)(5)(4)(3)(2)(1) / (3)(2)(1)(3)(2)(1) = 720 / 36 = 20 different combina-
tions. Again, as expected, the standard deviation of the sampling distribu-
tion gets smaller (i.e., 0.68 versus 0.98 versus 1.63) as n gets larger.

One (correct) way to think about this dynamic is to say that samples
become more representative as n approaches N. But another (also correct)
way to think about this is to say that this pattern reflects favorably on the
qualities of our statistical formulas. Formulas that are statistically effi-
cient, a desirable property of statistics explained in Chapter 2, will yield
results honoring the expectation that estimates should become less fluky
as sample size increases.

Notice also that the means of the statistics in all three of the sampling
distributions in Table 6.5 exactly equal the population parameter. Here
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µ = 3.33, and the means of the statistics in the three sampling distributions
are also all 3.33. This result reflects an expectation that formulas for sta-
tistics should also be statistically unbiased, as noted in Chapter 2. So
another feature of all sampling distributions is that:

2. The mean of the statistics in a sampling distribution for unbiased
estimators will equal the population parameter being estimated.

A third pattern in Table 6.5 occurs not for sampling distributions for
all statistics, but does occur for the sampling distribution for the mean.
Notice that even though the population scores have a somewhat skewed
distribution (parameter coefficient of skewness = –0.38; parameter coeffi-
cient of kurtosis = –1.48), the shapes of the sampling distributions
approach normality (i.e., skewness and kurtosis of zero) as sample size, n,
increases. This reflects a dynamic stated in what is called the central limit
theorem, which says that as n becomes larger, the sampling distribution of
the mean will approach normality even if the population shape is
nonnormal. This theorem is useful in developing an equation to estimate
the standard deviation of the sampling distribution of the mean when we
do not have the sampling distribution, such that this SD of the sampling
distribution cannot be directly computed using the statistics housed in the
sampling distribution.

��� Standard Error/Sampling Error

The standard deviation of a sampling distribution is really, really, really
important in statistics. Given important applications, by now logically we
would expect that this standard deviation will not be called “the standard
deviation of the sampling distribution.” Too many people would know
what this was. Instead, to keep everybody on their toes, we call the stan-
dard deviation of the sampling distribution the standard error of the statis-
tic or the standard error (i.e., the SE).

Still, perhaps a logical case can be made for naming standard devia-
tions of the sample and the population SDs, and the standard deviation of
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the sampling distribution SE. The names distinguish SDs of scores from
SDs of statistics. This particular SD, of a sampling distribution, not of the
population or the sample, is used for two purposes.

First, the SE can be used descriptively to quantify how much precision
we believe we have for our given sample statistic. Just as the sample statis-
tic SD is a very important characterization of how well the sample mean
represents the n scores, the SD of the sampling distribution informs us
about the quality of a statistic as a parameter estimate, whatever statistic
we are computing.

For example, if in one study we compute the statistic median for lon-
gevity for n = 10 cancer patients receiving treatment, and the statistic is
24.0 months postdiagnosis, and we somehow knew that the standard
deviation of the sampling distribution for the estimate is 30.5, we would
not vest excessive confidence in an interpretation that the new treatment
prolongs life, given the ratio of the statistic to its SEMEDIAN (i.e., 24.0 / 30.5
= 0.79). We might vest more confidence in our statistic if this ratio was
large, or at least larger. However, the 0.79 ratio is not entirely unexpected,
because we probably expect that median estimates based on n = 10 tend to
bounce around a lot. And we have no way to know whether our particular
estimate, 24.0 months, came from the middle, or the low, or the high end
of the sampling distribution.

On the other hand, in a second study with n = 200, if the statistic
median was 24 months postdiagnosis, and SEMEDIAN was 2 months, we
would vest considerable faith in an inference that this new treatment
increases longevity by roughly 2 years after initial diagnosis. In other
words, even two identical statistics with different SEs have quite different
implications.

Second, standard errors of statistics can be used inferentially to test
the statistical significance of a parameter estimate. One way to perform a
statistical significance test in this manner is to divide the statistic by its
standard error. This ratio is so fundamental in statistics that the ratio is
given three synonymous names: t statistic, Wald statistic (in honor of a
statistician with that name), and critical ratio. This takes us to the topic of
yet another kind of distribution, in addition to sample distribution, popu-
lation distribution, and sampling distribution: test statistic distributions.
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��� Test Statistics

At this point in our discussion of NHSST, several questions may (and
should) have been bothering you. How do we get the sampling distribu-
tion, if all we have is a sample? If we had the population, we would not
fool with a sample, and we would not care about the sampling distribu-
tion for a given statistic at a given sample size.

Historically, researchers conducted statistical significance tests not
with sampling distributions, but with related distributions, called test sta-
tistic distributions. Researchers soon realized that although pCRITICAL (or α)
is easy to obtain, because pCRITICAL is obtained by subjective judgment,
pCALCULATED on the other hand was very difficult to compute.

Of course, you must bear in mind that until around the 1970s, statis-
tics were performed on mechanical calculators, and computations also had
to be performed repeatedly until the same results were achieved on some
two of the repeated calculations. So the difficulty of estimating pCALCULATED

was no small thing. Indeed, only in the last few years has software, such as
SPSS, routinely provided pCALCULATED when statistical analyses are being
performed.

Happily, researchers eventually realized that distributions, called test
statistics (TS) distributions, can be used in place of p values. And test sta-
tistics are much easier to calculate than are pCALCULATED values.

There are numerous TS distributions. You have probably heard of
some test statistics, such as t, z (not to be confused with the score distribu-
tion, called z), F, and χ2. Other test statistics, such as the binomial, pois-
son, and gamma distributions, may be less familiar.

Test statistics are all directly related to sampling distributions of sta-
tistics. However, test statistics are not distributions of statistics, but
instead are a function of statistics divided by the standard error of the sta-
tistic (i.e., by the standard deviation of the sampling distribution). Con-
ceptually, test statistics are standardized sampling distributions.

As indicated in the “Decision Rule” column of Figure 6.2, for a given
set of sample results, the comparison of a given pCALCULATED with a given
pCRITICAL will always (always, always . . .) yield the same decision about the
comparison of a given TSCALCULATED with a given TSCRITICAL. The only thing
that is different in invoking the decision rules is that the signs of the rules
are reversed.
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For example, if pCALCULATED is 0.049, and pCRITICAL (i.e., α) is 0.05, we
will reject. If tCALCULATED is 2.05, and tCRITICAL is 2.00, we will reject. Con-
versely, if FCALCULATED is 4.00, and FCRITICAL is 4.10, we will not reject the
null.

We will not delve very far into the murky world of test statistics, and
especially the more esoteric test statistics. Modern statistical software has
been programmed to select the appropriate test statistics with which to
evaluate given hypotheses.

Furthermore, in recent years commonly used statistical software has
now been programmed to print pCALCULATED values always. This means that
test statistics are largely historical artifacts, now that with modern soft-
ware and computers we can painlessly compare pCALCULATED against
pCRITICAL. So here we will only briefly explore the computation of test statis-
tics for three research situations.

Test statistics are actually related to each other. For example, a t can
be converted into an F, and so forth. The full set of relations among test
statistics is beyond the scope of our treatment, but the interested reader
may wish to consult Glass and Stanley (1970, pp. 236–238).

H0: 1
2 = 2

2

Let’s say that on the midterm exam in your class, the 11 male students had
SDM = 10.0 right answers and the 21 female students had SDF = 8.0 right
answers. You want to test the null hypothesis that the test score disper-
sions of males and females are equal. For your sample data, given statistic
SDs of 10.0 and 8.0, you want to know whether or not to reject H0: σM =
σF. Let us presume that you are using α = 0.05.

For convenience of computation in the test of the null that two stan-
dard deviations are equal, we will test the equivalent hypothesis that H0:
σM

2 = σF
2. This is permissible because, for a given pair of sample dispersion

statistics, the test of H0: σM
2 = σF

2 yields an identical pCALCULATED as the test
of H0: σM = σF.

The test statistic suitable for this null is the F ratio, named to honor
Sir Ronald Fisher, a famous statistician who computed many test statistics
tables and developed various formulas for conducting NHSST. The F test
statistic is always a ratio of two variances. Because FCALCULATED is always
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computed by dividing one variance by another variance, F itself is also in a
squared, area-world metric.

For the test of the null that two variances are equal (but not necessar-
ily for other applications involving different hypotheses), the formula for
the test statistic is

FCALCULATED = SD2 / SD2 (6.3)

For our data, we have FCALCULATED = 10.02 / 8.02 = 100.0 / 64.0 = 1.56.
We now have pCRITICAL and FCALCULATED. We can only compare

pCALCULATED with pCRITICAL, or TSCALCULATED with TSCRITICAL. We need either
pCALCULATED or TSCRITICAL. FCRITICAL is easier to obtain.

Statistics textbooks traditionally contained appendices for various test
statistics, for various sample sizes, and for various values of α (i.e., usually
0.05 and 0.01). Indeed, some books consisted only of TSCRITICAL values for
various research situations. These books were invaluable for decades. But
today most microcomputers have a spreadsheet with functions built in
that yield TSCRITICAL for all commonly used test statistics, any sample sizes,
and any α. Thus, the books reporting page after page after page of values
for F and t and other test statistics are primarily useful for treating insom-
nia, because they make dull reading even for a statistician.

However, to find either FCRITICAL or pCALCULATED for our sample using
Excel, we will first need to compute an additional pair of numbers for our
research situation. Degrees of freedom quantify how many scores in a
dataset are free to vary in the presence of a statistical estimate.

For example, if we have the scores {1, 2, and 3} in the presence of an
estimate that M = 2.0, the degrees of freedom for this mean are 2. If I
know the mean is 2.0, and I know any two of the three scores, the remain-
ing score is fully statistically determined. For example, if I know the mean
is 2.0, and that two scores are {1 and 2}, the third score can only be 3. If I
know the mean is 2.0, and that two scores are {2 and 3}, the third score
can only be 1.

For the F ratio, which is computed as the ratio of two statistic vari-
ances, we must determine the degrees of freedom for the numerator statis-
tic and for the denominator statistic. The degrees of freedom for the
variance, like the degrees of freedom for the mean, also equal n – 1. So for
our situation, the degrees of freedom associated with the variance in the
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numerator of FCALCULATED are 10 (i.e., nMALES = 11 – 1). The degrees of free-
dom for the denominator are 20 (i.e., nMALES = 21 – 1).

When people report FCALCULATED values, they may report the degrees of
freedom in various ways. For example, a researcher may report that “the
F10 / 20 was computed to be 1.56” or “the calculated F (df = 10, 20) was
1.56.” Of course, even if the author does not report sample sizes, for the
test of this particular null hypothesis we know from these degrees of free-
dom that sample sizes were 11 (10 + 1) and 21 (20 + 1).

We are now ready to determine the FCRITICAL that is associated with our
particular degrees of freedom and our preselected α. The abridged tables
in older textbook appendices (and even the books consisting entirely of
test statistics tables) reported FCRITICAL values only for selected sample sizes,
and only for selected values of α (e.g., 0.05, 0.01, 0.001). Indeed, one rea-
son so many articles use α = 0.05 (or 0.01 or 0.001) is that these were the
common values reported in abridged test statistic tables. But, as noted pre-
viously, most modern computers have software with built-in test statistic
distributions for any sample sizes and any alpha values.

For our problem, we will again use a two-tailed test. We have no rea-
son to predict that males’ scores will be more dispersed than will scores of
females, or the converse. We only wish to evaluate whether the scores are
equally dispersed, or not. So we will divide the test statistic distribution
into two equal rejection regions, using α = 0.05 / 2 = 0.025.

We can find the FCRITICAL value for our results by typing into Excel our
α / 2 value, and our degrees of freedom numerator and denominator,
respectively,

=FINV(.025,10,20)

or

=FINV(.05/2,10,20)

and hitting the ENTER key. The computer will report that FCRITICAL = 2.77.
Because our FCALCULATED (i.e., 1.56) is less than our FCRITICAL (i.e., 2.77),
according to the Figure 6.2 decision rule, this means we will decide not to
reject H0: σM

2 = σF
2 (or H0: σM = σF).

However, with modern computers and software, we can just as easily
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(and in a more straightforward manner) make the same determination by
comparing p values. We can type our FCALCULATED into Excel:

=FDIST(1.56,10,20)

and hit the ENTER key. The computer will report that pCALCULATED = 0.19.
Because our pCALCULATED is greater than our pCRITICAL, according to the Figure
6.2 decision rule, this means we will decide not to reject H0: σM

2 = σF
2 (or

H0: σM = σF).
We would never perform comparisons of both the pairs of F and the

pairs of p values, because the decisions reached by these two rules are
always the same. Of course, we could conduct all our computations to
more decimal places, if we were concerned about mathematical precision.
But in practice, we will usually conduct NHSST using software, such as
SPSS, which will use more precision in all the relevant computations.

Frequently, different test statistics, or different formulas for the same
test statistics, may be used to test selected null hypotheses. In the present
example, a formula developed by Levene (1960) might have been used.
Indeed, newer versions of SPSS use the Levene test rather than the test
described here.

H0: M = F ( M
2 = F

2 Assumed)

Using the same research situation, let’s say that you wanted to evaluate
whether the mean numbers of midterm right answers of the males and
females were equal (H0: µM = µF). Year after year, you have noted that the
score variances of the two groups are equal, and so a comparison of these
variance statistics is not of interest. The equality of these two variances in
the population is judged to be a given.

The sample statistics are MM = 97.0 (SDM = 10.0) and MF = 103.0
(SDF = 8.0). The test of H0: µM = µF can be accomplished by using the test
statistic distribution, t, developed in 1908 by Gossett (“Student,” 1908), a
worker in the Guinness brewery in Dublin. Because the employer prohib-
ited publication by employees under their own names, Gossett wrote
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under the pseudonym “Student,” and so this test statistic is sometimes
referred to as Student’s t.

We will use these data to test H0: µM = µF, assuming the researcher’s
interest in looking for any difference in the means, regardless of which
group has a higher mean. The researcher’s expectation is expressed in
terms of an alternative hypothesis (HA). For the two-tailed test appropriate
for these circumstances, the related alternative hypothesis is HA: µM ≠ µF.

For heuristic purposes only, we will also conduct a one-tailed test,
under the alternative hypothesis that HA: µF > µM. Simultaneous use of
both two-tailed and one-tailed tests for a given null hypothesis is never
done in practice. However, the heuristic comparison allows us to see dif-
ferences in the two procedures, as well as how the procedures can lead to
different NHSST outcomes even for one dataset.

For both tests, we will use α = 0.05. This is a very commonly used
value for pCRITICAL, although the choice is partially an artifact of space limi-
tations governing the length of abridged test statistic distributions pre-
sented in outdated textbooks.

HA: M F

In Chapter 3, it was emphasized that the SD characterizes how well a
mean does at representing the scores in a dataset. An M of 97.0 with SD =
0.5 represents the scores in a dataset much better than an M of 97.0 with
SD = 20.0. Logically, this suggests that score dispersion must be taken into
account when comparing two means.

We require an estimated parameter score variance across both groups
of scores when testing the equality of two means. This is called a pooled
variance (σ2

POOLED). If the two groups were of equal size, we could compute
the estimated pooled variance as the simple average of the two group vari-
ances (i.e., σ2

POOLED = [SD1
2 + SD2

2] / 2). However, the following formula
for the pooled variance takes into account the difference in group ns, and
can be used even when group sizes are unequal:

σ2
POOLED = [(n1 – 1)SD1

2 + (n2 – 1)SD2
2] / [n1 + n2 – 2] (6.4)
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For our data, we have

[(11 – 1)10.02 + (21 – 1)8.02] / [11 + 21 – 2]
[(11 – 1)100.0 + (21 – 1)64.0] / [11 + 21 – 2]

[(10)100.0 + (20)64.0] / [11 + 21 – 2]
[1000.0 + 1280.0] / [11 + 21 – 2]

2280.0 / [11 + 21 – 2]
2280.0 / 30

σ2
POOLED = 76.0

Remembering that test statistics are always a function of the ratio of a
parameter estimate (such as mean difference, M1 – M2) to the standard
error of this estimate, we require SEM1 – M2 for the current problem. When
(a) two groups are independent (i.e., the composition of the first group did
not affect who was assigned to group two, except that the two groups are
mutually exclusive), and (b) we assume σM

2 = σF
2, then

SEM1 – M2 = [σ2
POOLED((1 / n1) + (1 / n2))]0.5 (6.5)

For our data we have

[76.0((1 / 11) + (1 / 21))]0.5

[76.0(0.09 + 0.05)]0.5

[76.0(0.14)]0.5

10.530.5

SEM1 – M2 = 3.24

Last, we need to compute tCALCULATED. For the nondirectional, or two-
tailed, test involving HA: µM ≠ µF, we can compute the mean difference by
subtracting MF from MM, or MM from MF. For research involving two sam-
ple means that are not identical, one choice would yield a mean difference
(and a tCALCULATED) that is negative, and the other choice would yield a
mean difference (and a tCALCULATED) that is positive. However, the pCALCULATED

for either choice would be identical regardless of this decision because the
t test statistic distribution, unlike the F distribution, is symmetrical (i.e.,
not skewed); therefore, the rejection regions for the two-tailed test are
unaltered by this decision.
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We will compute the mean difference (i.e., “mean difference” = “dif-
ference of the two means”) as MF – MM, which for our data yields 103.0 –
97.0 = 6.0. We compute tCALCULATED as (MF – MM) / SEM1 – M2. For our data,
we obtain tCALCULATED = 6.0 / 3.24 = 1.85. Is this mean difference suffi-
ciently large, given the score standard deviations and our two sample sizes,
to reject H0: µM = µF?

Again, to honor historical practice required before the ready access in
recent years (via modern software) to pCALCULATED, we can invoke the Figure
6.2 decision rule comparing tCALCULATED to tCRITICAL. We have tCALCULATED =
1.85. We can obtain tCRITICAL for our α and our sample size by using the
Excel spreadsheet function TINV. We require the degrees of freedom for a
mean difference. Unlike the F ratio, which has degrees of freedom for both
the numerator and the denominator, the df of t is a single number, and for
this application equals n1 + n2 – 2, which for our data is 30 (i.e., 11 + 21 –
2). We input the alpha and the df into the spreadsheet as

=TINV(.05,30)

and hit the ENTER key. The tCRITICAL is 2.04. Because 1.85 < 2.04, using
the decision rule in Figure 6.2, we fail to reject H0: µM = µF.

We could have instead compared our pCRITICAL of 0.05 with pCALCULATED.
Our statistical computer software (e.g., SPSS) would have printed this, and
our work would be done. But we can also use Excel to determine the
pCALCULATED. We type in

=TDIST(1.85,30,2)

where 1.85 is tCALCULATED, 30 = df, and 2 indicates that we are performing a
two-tailed test of a “no difference” (or “nondirectional”) alternative
hypotheses. The computer returns a pCALCULATED value of 0.074, and
because 0.074 > 0.05, we fail to reject H0: µM = µF.

HA: F > M

For heuristic comparison purposes, let’s presume that prior to collecting
sample data you expected the women students to outperform the male stu-
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dents, resulting in MF > MM. This expectation might have been based on
years of observing this pattern in various semesters. Or perhaps there is a
psychological theory predicting that women are more verbal than men,
and that therefore women should do better than men, at least when statis-
tics are taught with an emphasis on concepts as opposed to an emphasis
on the rote memorization of statistical formulas.

All the calculations (i.e., the pooled variance and the standard error)
in the previous example remain the same. However, for a one-tailed, direc-
tional test, the mean difference must be computed as the mean for the
group expected to have the higher average minus the mean of the other
group.

We have already computed the mean difference and t, reflecting an
expectation that µF > µM. Therefore, the mean difference remains 6.0, and
still tCALCULATED = 6.0 / 3.24 = 1.85. However, the test statistic critical value,
tCRITICAL, will differ for a directional, one-tailed test, because rather than
splitting α to create rejection regions in both tails of the test distribution,
we will put all of α into a single tail. For the current problem, we can find
tCRITICAL by typing into Excel

=TINV(.10,30)

where 0.10 equals α times 2.0, or

=TINV(.05*2,30)

and hitting the ENTER key. The tCRITICAL value is 1.70.
We learn that now we must reject the null hypothesis, because now

tCALCULATED = 1.85 is greater than tCRITICAL = 1.70. Clearly, testing directional
alternative hypotheses can result in statistical significance that would not
otherwise be achieved.

What is to keep the nefarious, perverse researcher from pretending to
have had a directional alternative hypothesis all along? Of course, the
integrity of scholars hopefully precludes such treachery. Another barrier to
such pretense is that directional hypotheses should not be tested or
reported without either an empirical or a theoretical basis for the tests.
Reports of directional tests in the absence of clear rationales should be
treated with skepticism.
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Directional alternative hypotheses do have the appeal that they honor
more specific expectations, when such expectations are possible. How-
ever, it should also be noted that directional tests can result in the failure
to reject when rejection would occur for the same data under a two-tailed,
nondirectional test.

For example, let’s say the researcher was testing HA: µF > µM, and that
the sample statistics were MM = 597.0 (nM = 11; SDM = 10.0) and MF = 3.0
(nF = 21; SDF = 8.0). When statistics are different in the direction opposite
to expectation, the null hypothesis will never be rejected, no matter how
wildly different are the sample means!

This is because the rejection region is vested in a single tail of the test
distribution (or the sampling distribution). No matter where the sample
statistics occur in the far extremes of the sampling distribution opposite
our one-tailed expectations, the decision is “fail to reject.”

Conducting one-tailed tests is a bit like betting on specific numbers
rather than on a color when playing roulette. If you’re right, the payoffs
can be big. But if you’re wrong, you can lose it all. However, it must be
said that directional tests honor a science in which researchers are trying
to develop theory that says more than only that things differ, or only that
things have a nonzero relationship.

H0: 1 = 2 ( 1
2

2
2)

More typically when testing H0: µ1 = µ2, we may have no firm basis for
assuming that the population variances are equal. Indeed, if we test and
reject the null that the variances are equal, the most reasonable assump-
tion is that the population variances are unequal.

Table 6.6 presents hypothetical data that will be used to compare
results when t tests are used to evaluate the equality of two means when
the two samples are independent (e.g., boys and girls) rather than depen-
dent or paired (e.g., participants are sampled as marriage partners). For
this independent t test example, the dependent variable is “X1,” and the
independent variable is named “GROUP.”

In this example, there are six people in group 1, and six people in
group 2, and so group sizes are equal. This is permissible but not required
for the independent samples t test of H0: µ1 = µ2. However, equal group
sizes are required for the dependent samples t test, because participants are
sampled as pairs.
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When parameter variances are not assumed to be equal, the tCALCULATED

is still the ratio of the mean differences to the SE of the mean differences,
but now the standard error is computed as

SEM1 – M2 = [(σ1
2 / n1) + (σ2

2 / n2))]0.5 (6.6)

For our data we have

[(1.872 / 6) + (3.742 / 6)]0.5

[(3.50 / 6) + (13.99 / 6)]0.5

[0.58 + 2.33]0.5

2.910.5

SEM1 – M2 = 1.71

So our tCALCULATED value is M1 – M2 = 3.50 – 6.00 = –2.50 / SEM1 – M2 =
–2.50 / 1.71 = –1.46.

However, for this situation, df no longer equals n – 2 (Satterthwaite,
1946). Rather, the df are
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TABLE 6.6. Hypothetical Data for Use in Comparing
Independent and Dependent (Paired) t Tests

X1 X2 GROUP

1 1 1
2 3 1
3 5 1
4 7 1
5 9 1
6 11 1
1 . 2
3 . 2
5 . 2
7 . 2
9 . 2

11 . 2

Note. The data layout and variable names honor the format required
for inputting the data in a statistical software package, such as SPSS.
“.” reflects missing data, which would be input as empty cells in the
input window, or as blank spaces in a datafile.



[(SD1
2 / n1) + (SD2

2 / n2)]2 / [{(SD1
2 / n1)2 / (n1 – 1)} + {(SD2

2 / n2)2 / (n2 – 1)}] (6.7)

For our data we have

[(1.872 / 6) + (3.742 / 6)]2 / [{(1.872 / 6)2 / (6 – 1)} + {(3.742 / 6)2 / (6 – 1)}]
[(3.50 / 6) + (13.99 / 6)]2 / [{(3.50 / 6)2 / (6 – 1)} + {(13.99 / 6)2 / (6 – 1)}]

[(3.50 / 6) + (13.99 / 6)]2 / [{(3.50 / 6)2 / 5} + {(13.99 / 6)2 / 5}]
[0.58 + 2.33]2 / [{0.582 / 5} + {2.332 / 5}]

2.912 / [{0.582 / 5} + {2.332 / 5}]
8.47 / [{0.34 / 5} + {5.43 / 5}]

8.47 / [0.07 + 1.09]
8.47 / 1.16
df = 7.30

We can now use the Excel spreadsheet to solve for pCALCULATED. How-
ever, because tCALCULATED is a symmetrical (nonskewed) distribution,
pCALCULATED at a fixed df is the same for –1.46 and 1.46. Excel only pro-
grams solutions for the positive values of tCALCULATED. So we enter

=TDIST(1.46,7.30,2)

and obtain pCALCULATED = 0.188. Assuming α = 0.05 (or any value < 0.188),
our decision is “not reject.”

H0: 1 = 2 (Paired Scores)

When means are from dependent samples (e.g., paired twins generate
scores on a variable X, or given participants generate both midterm and
final exam scores), an additional complication arises. Dependent or paired
sampling structurally tends to induce a relationship between the paired
scores. This makes a given mean difference more or less impressive,
depending on how correlated the two sets of paired scores are. We must
take the degree of this correlation into account when computing the SE of
the mean difference, and this in turn impacts tCALCULATED, even for a fixed
mean difference.

Here we treat the Table 6.6 data now as paired data, using the X1
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scores of the last six people also as the X2 scores of the first six people,
and now presuming that we had n = 6 paired scores (X1 and X2) of one
group of people, rather than two groups of participants with n = 12 scores
on one dependent variable (X1). This is for heuristic comparative pur-
poses only. Real data are treated only as independent, or as dependent.

The standard error of mean differences for paired scores can be com-
puted as

SEM1 – M2 = [(SD1
2 / n) + (SD2

2 / n) – (2(r){(SD1 * SD2) / n})]0.5 (6.8)

where n is the number of paired scores. Note the logically expected use of
the Pearson r of the paired scores in the formula for the SE. If r is zero, the
rightmost portion of Equation 6.8 will zero out, and the formula will
equal Equation 6.6 (i.e., the SE formula for evaluating mean differences in
independent samples)!

As Equation 6.8 intimates, when r is positive, as r gets larger, the stan-
dard error of the mean difference will become smaller. This, in turn, will
make tCALCULATED larger, and statistical significance more likely. Conversely,
when r is negative, the standard error of the mean difference will become
larger. This, in turn, will make tCALCULATED smaller, and statistical signifi-
cance less likely.

For these data, the second set of six scores was computed by (a) dou-
bling the original scores and then (b) subtracting 1. The mean of the first
set of scores was 3.50 (SD = 1.87). As we learned in the very important
Reflection Problems for previous chapters, the use of multiplicative and
additive constants has predictable impacts on location, dispersion, and
relationship:

1. The new mean (i.e., 6.00) equals the old mean (3.50) times the
additive constant (3.50 * 2 = 7.00) minus 1 [(3.50 * 2) – 1 = 7.00 –
1 = 6.00)].

2. Given that only multiplicative constants can affect SD, the new
standard deviation (i.e., 3.74) equals the old SD times the absolute
value of the multiplicative constant (1.87 * 2 = 3.74).

3. Given that (a) scores correlate +1.0 with themselves, and (b) addi-
tive and positive multiplicative constants do not affect r, the r of the
two sets of scores is +1.0.
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So, for these data, with n = 6 paired scores, we have

[(1.872 / 6) + (3.742 / 6) – (2(1.0){(1.87 * 3.74) / 6})]0.5

[(3.50 / 6) + (13.99 / 6) – (2(1.0){(1.87 * 3.74) / 6})]0.5

[0.58 + 2.33 – (2(1.0){6.99 / 6})]0.5

[0.58 + 2.33 – (2{1.16})]0.5

[0.58 + 2.33 – 2.33]0.5

0.580.5

SEM1 – M2 = 0.76

And thus tCALCULATED is again the mean difference divided by the standard
error of the mean difference, which here yields (3.50 – 6.00) / 0.76 =
–2.50 / 0.76 = –3.29.

The degrees of freedom for this test are n – 1 = 6 – 1 = 5. So we enter

=TDIST(3.29,5,2)

into Excel and obtain pCALCULATED = 0.022. Assuming α = 0.05 (or any value
> 0.022), our decision now is “reject.”

These results make the heuristic point that, for the same numbers,
evaluating a mean difference across two groups with independent versus
dependent tests can yield quite different results. One implication is that the
correct selection of the appropriate test statistic can be vitally important.
Another implication is that using paired or repeated measures can have
considerably more statistical power against Type II error, as we shall even-
tually see in Chapter 12.

��� Statistical Precision and Power

Precision as a Function of n

When we are using statistics to estimate parameters, we would certainly
prefer our estimates to be more rather than less precise. In other words, we
would like our estimates to have small standard errors, even if we are not
conducting statistical significance tests. Thus, in the first instance, if we
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estimate that MX = 100.0 and that SEM = 1.5, we would be considerably
more confident in our estimate of the mean than if MX = 100.0 but SEM =
15.0.

Precision of estimates also benefits us if we are conducting statistical
significance tests. All test statistics are a function of a parameter estimate
divided by the standard error of the statistic, although this relationship is
most obvious for the t test. For a given statistic, we will obtain larger
TSCALCULATED, and be more likely to obtain statistical significance, as the
standard error becomes smaller.

From our previous discussion of the sampling distribution, it should
be clear that for given statistics, as n gets larger, the sampling distribution
gets narrower, reflecting less flukiness being likely in a given sample, and
less flukiness being present in all the possible estimates of the statistic. And
when the sampling distribution gets narrower, so, too, does the standard
error measuring the dispersion of the statistics in the sampling distribution
get smaller.

However, the impact on precision of adding each new person is not
equal, and instead lessens as each new person is added. Thus, the impact
on precision of going from n = 5 to n = 10 may be considerable, but the
impact would be less going from n = 10 to n = 15, and would be less still
when going from n = 15 to n = 20, although each increase in sample size
does improve precision.

We can get a more concrete understanding of these dynamics by fur-
ther considering the standard error of the mean. If we have the sampling
distribution of the mean (which we wouldn’t, or we wouldn’t be doing
NHSST), we can apply the formula for the standard deviation to the sta-
tistics in the sampling distribution, and obtain SEM directly via computa-
tion.

Otherwise, we can estimate the SEM by invoking the following equa-
tion:

SEM = SDX / n0.5 (6.9)

which is a theoretical estimate, but one that works reasonably well if the
population scores are normally distributed or the sample size is sufficiently
large that the central limit theorem can be invoked. Table 6.7 presents a
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range of standard errors for the mean, associated with two arbitrarily
selected values for SDX, and for a range of sample sizes.

As suggested by Table 6.7, one way to increase the precision of the
mean statistic is to decrease the score standard deviation estimated for the
population. For example, for a given n, if we halve the SDX, we also dou-
ble the precision of our estimate (i.e., SEM is halved). Thus, at n = 4, when
we move from SDX = 4.0 to SDX = 2.0, SEM changes from 2.00 to 1.00.

This only makes sense. I have repeatedly said that SDX characterizes
how well MX does at representing a set of scores. Means that better cap-
ture the features of sample scores should be more generalizable. Restricted
sample score ranges also suggest that the population scores are more
homogeneous, which implies that all means at a given n from such popula-
tions should bounce around less than if σX was larger.

Of course, as a practical matter, making SDX smaller is not always
feasible. In some instances, we can attempt to achieve this objective. For
example, in an intervention study, perhaps if the treatment is continued
longer, treatment responses will become more uniform or homogeneous.

But the most practical way of impacting precision is to increase sam-
ple size. Table 6.7 shows that to halve SEM, for a fixed SDX, we must qua-
druple the sample size! Indeed, to change SEM by a factor of Q, we must
change the sample size by a function of the square of the reciprocal of Q
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TABLE 6.7. Statistical Precision for M as a Function of SDX and n

SDX n SEM Change

4.0 4 2.000
4.0 16 1.000 50.0%
4.0 64 0.500 50.0%
4.0 256 0.250 50.0%
4.0 1024 0.125 50.0%
4.0 4096 0.063 50.0%
4.0 16384 0.031 50.0%
2.0 4 1.000
2.0 16 0.500 50.0%
2.0 64 0.250 50.0%
2.0 256 0.125 50.0%
2.0 1024 0.063 50.0%
2.0 4096 0.031 50.0%



(e.g., for Q = 1 / 2, sample size must be increased by (2 / 1)2, or 4.0; for Q
= 1 / 3, sample size must be increased by (3 / 1)2, or 9.0).

Nature of Power

In our initial discussion of Figure 6.2, we noted that α is obtained by sub-
jective judgment (i.e., α is not computed). We simply declare what we
believe is an acceptable maximum likelihood of a Type I error, given what
we are investigating, and our personal values system. This selection of α is
then taken into account in our remaining use of the NHSST logic.

However, no explanation was offered as to how the probability of a
Type II error, β, is obtained. In fact, β, unlike α, is computed. However,
the calculations are quite complex. The interested reader is referred to
Cohen’s (1988) seminal book.

Specialized software can be used to estimate β. Of course, the calcula-
tion is irrelevant in the presence of a reject decision, because you cannot
make a Type II error if you are in one of the top two boxes in Figure 6.2.
The β probability is relevant only (a) before you conduct the study, and do
not yet know the resulting decisions regarding H0, or (b) after the study,
only if the decision was “not reject.”

Although we will not cover the computations of β, the related con-
cepts are quite important, and are the focus here. As usual, we eschew
excessive mathematical detail because modern software so painlessly
implements the required computations.

The concept of the complement of β, called power (i.e., power = 1 –
β), is important. From the formula for power (i.e., 1 – β), clearly if we
have either β, or alternatively power, the complement can be computed by
an easy subtraction. Power is the probability or rejecting the null hypothe-
sis when the null hypothesis is false, as reflected in Figure 6.2.

To understand power (and thus β), we must understand the relation-
ships of four features of a given study: (a) n, (b) α, (c) β, and (d) effect size.
An effect size is a statistic quantifying the extent to which sample statistics
diverge from the null hypothesis.

Effect size is perhaps the most important single concept in statistics,
and is covered in considerably more detail in Chapter 7 (see also Thomp-
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son, 1996, 2002a). For now, suffice it to say that there are dozens of effect
size statistics (Kirk, 1996, 2003; Rosenthal, 1994; Thompson, in press).

But commonly-used effect sizes are zero when sample statistics exactly
match the null hypothesis. For example, if the differences in the coeffi-
cients of kurtosis of IQ scores of left-handed, right-handed, and ambidex-
trous persons are being tested under a nil null and the statistics are –1.3,
–1.3, and –1.3, the effect size is zero. If these statistics at the same sample
sizes were –1.3, –1.3, and –1.2, the effect size would not be zero. The
effect size would be larger still if the three statistics at the same sample
sizes were –2.2, 0.5, and 3.1.

We will approach power analysis (i.e., the estimation of β and the
mathematical complement of β, 1 – β) conceptually rather than mathemat-
ically. Think of every research study as involving a quagmire of uncer-
tainty, which we will label “the blob.”

The blob incorporates four non-overlapping elements: (a) n, (b) α, (c)
β, and (d) effect size. For a given study, the blob has a fixed and knowable
area. This means that if we know (or can estimate) any three of the areas,
by subtraction we can solve for the area taken up by the remaining fourth
element. The blob can be used to conduct power analyses in two contexts.

First, prospectively, before we conduct a study, we can subjectively
select desired values for α and β. We can estimate the expected effect size
either by (a) computing some kind of location statistic (e.g., median,
mean, weighted average) across the effect sizes in the related prior studies,
or (b) identifying the smallest effect size that would have to be obtained in
our future study that we personally would deem noteworthy. Then we can
solve for the required n for our study, perhaps adding a few extra partici-
pants as a safety measure.

Of course, this presumes that our sole focus is (a) statistical signifi-
cance and (b) economy. In general, because precision is enhanced as we
add participants, we would usually like to have the largest sample size we
can feasibly obtain.

Second, retrospectively, after the study has been conducted, we can
conduct a power analysis to solve for β. In this case we invoke the α we
selected before conducting the study, and the n we actually used in the
study. We now compute the actual effect size we obtained, rather than
having to estimate or guess the effect size, and we then solve for β and
power (i.e., 1 – β). Of course, we would never perform this analysis if we
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rejected the null hypothesis (i.e., the results were “statistically signifi-
cant”), because Type II error is irrelevant in the presence of a decision to
reject the null.

One reason we rarely see retrospective power reported in journal arti-
cles is that historically authors have been reluctant to submit, and editors
have been reluctant to publish, articles in which results were statistically
nonsignificant. In a literature plagued by what Rosenthal (1979) labeled
the “file drawer” problem, referring to the historical tendency of authors
to file such manuscripts away rather than submit them for possible publi-
cation, Type II error is of no interest. However, the field is moving, and
the “file drawer” problem may become less dominant, in which case Type
II error rates will be seen more often in journal articles.

Power Analyses via “What-If” Analyses

One easy way to conduct power analyses is to create “what-if” spread-
sheets in software such as Excel (Thompson & Kieffer, 2000), although
specialized statistical software for power analysis is also widely available.
Figure 6.3 shows the setup for a research problem involving the Pearson r.
Spreadsheets define cells referenced by columns labeled by letters (e.g.,
“A”, “B”, “C”) and rows referenced by numbers (e.g., “1”, “2”, “3”). To
create the Figure 6.3 spreadsheet, type “A1” into the uppermost, leftmost
cell (i.e., cell “A1”). Type “B” into the “B1” cell. Type all the cell entries,
as they are displayed in Figure 6.3.

Once the spreadsheet entries have been typed, never change any
entries, except the entries for the Pearson r in cell “C6,” and for the sam-
ple size, n, in cell “C7.” Figure 6.4 illustrates the output for a problem in
which the researcher presumed an r of 0.50 and an n of 33. For this
research situation, the pCALCULATED (to six decimal places) is 0.003047.
What-if spreadsheets can be used in two ways.

First, for a fixed effect size (both r and r2 are among the dozens of
effect size statistics), the sample sizes at which the fixed result transitions
from statistically significant to statistically nonsignificant (or vice versa)
can be determined. Simply type in the r and the n, and then alter n until
the transition point is detected at a given α.

For example, for a fixed effect size of r = 0.50 (r2 = 25%), at α = .05
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the result goes from being statistically significant at n = 16 to statistically
nonsignificant at n = 15. So, if we are going to conduct a study and expect
an r2 of 25%, and we want a statistically significant result, we need to use
a sample size of at least 16 participants.

Second, for a fixed sample size, the minimum effect size required to
achieve statistical significance can be determined. For example, using the
Figure 6.3 spreadsheet, for n = 20, what is the minimum r2 required to
achieve statistical significance?

What-if spreadsheets are extraordinarily valuable, for two reasons.
First, these spreadsheets are practically useful. The spreadsheets can be
used prospectively before a study to estimate the n required for an antici-
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pated effect size. Or they can be used retrospectively to flesh out the
import of a statistically significant effect. What does it mean to obtain a
statistically significant result when, at half the actual n, the result would
have remained statistically significant? What does it mean to fail to reject
if, with an additional one or two participants and the same effect size, the
statistically nonsignificant result would have been statistically significant?

Second, and more importantly, what-if spreadsheets are heuristically
valuable. Persons who use these spreadsheets to explore outcomes for a
wide range of effect sizes, and a wide range of sample sizes, will develop
an intuitive feel for the sample sizes required to obtain statistical signifi-
cance for a range of effect sizes. These exercises help us to remember that
“surely, God loves the .06 [level of statistical significance] nearly as much
as the .05” (Rosnow & Rosenthal, 1989b, p. 1277).

The really critical point is that what-if exercises can help promote the
realization that sample results will always be statistically significant at
some sample size, and sample size is a key driver in the decision to reject
or fail to reject (see Cohen, 1994). The only sample effect size that will
never be statistically significant for a null hypothesis of no difference or no
relationship is an effect size of exactly zero.

The likelihood of obtaining a zero effect size is infinitely small, and
thus not worth considering. This is because effect sizes are continuous.
The range of all possible effect sizes defines a number line consisting of
infinitely many points. The probability of sampling a zero out of infinitely
many possible effect sizes is infinitely small, because one outcome (i.e.,
effect size = 0) out of infinitely many yields an infinitely small probability
of that effect being sampled (i.e., 1 / ∞ is infinitely small).

The spreadsheet can be used to own the fact that all nonzero effect
sizes will be statistically significant at some sample size. Use the what-if
spreadsheet to determine the minimum sample size required to obtain sta-
tistical significance for r2 = 0.0000001. The required n may be large, but is
finite.

These realizations change the context for framing statistically signifi-
cant results. The implication is this:

Statistical significance testing can involve a tautological logic in which tired
researchers, having collected data from hundreds of subjects [today called

176 FOUNDATIONS OF BEHAVIORAL STATISTICS



“participants” instead], then conduct a statistical test to evaluate whether
there were a lot of subjects, which the researchers already know, because they
collected the data and know they’re tired. (Thompson, 1992c, p. 436)

In part, statistical significance tests evaluate whether researchers are ambi-
tious regarding sample size, or lazy. Would we rather know about the per-
sonality of the researcher (e.g., drive, ambition), or (a) the effect size
magnitude and (b) the replicability of the research results?

Matters really get dicey when we compare NHSST results (apples to
oranges versus apples to apples) across a related literature involving differ-
ent sample sizes. As Thompson (1999a) explained,

Because p values are confounded indices, in theory 100 studies with varying
sample sizes and 100 different effect sizes could each have the same single
pCALCULATED, and 100 studies with the same single effect size could each have
100 different values for pCALCULATED. (pp. 169–170)

��� pCALCULATED

The implication is not that excessive NHSST causes blindness, but instead
is that pCALCULATED must be interpreted with caution, and correctly.
Researchers ought to understand both what statistical significance tests do
not mean, and what they do mean. Empirical studies suggest that not all
researchers have these understandings (e.g., Mittag & Thompson, 2000;
Nelson, Rosenthal, & Rosnow, 1986; Oakes, 1986; Rosenthal & Gaito,
1963; Zuckerman, Hodgins, Zuckerman, & Rosenthal, 1993). As
Thompson (1999b) noted, “parroting mumbled words about ‘due to
chance,’ even when accompanied by enthusiastic hand flapping, doesn’t
count as real understanding” (p. 164).

What Does pCALCULATED Not Mean?

There are two misconceptions about pCALCULATED that remain somewhat
common. The first equates small pCALCULATED values with result import, and
the second equates small pCALCULATED values with result replicability.
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Result Import

As noted previously in this chapter, pCALCULATED is not useful in evaluating
result importance. Thompson (1993) explained, “If the computer package
did not ask you your values prior to its analysis, it could not have consid-
ered your value system in calculating p’s, and so p’s cannot be blithely used
to infer the value of research results” (p. 365).

In his classic dialogue between two hypothetical graduate students,
Shaver (1985, p. 58) poignantly illustrated the folly of equating result
improbability with result importance:

CHRIS: I set the level of significance at .05, as my advisor suggested. So a dif-
ference that large would occur by chance less than five times in a hundred if
the groups weren’t really different. An unlikely occurrence like that surely
must be important.

JEAN: Wait a minute, Chris. Remember the other day when you went into
the office to call home? Just as you completed dialing the number, your little
boy picked up the phone to call someone. So you were connected and talking
to one another without the phone ever ringing. . . . Well, that must have been
a truly important occurrence then? (p. 58)

Result Replicability

The pCALCULATED computation presumes that the null hypothesis exactly
describes the population, and then evaluates the probability that the sam-
ple came from this presumed population. The direction of the inference is
population to sample, not sample to population.

If NHSST really did make an inference from sample to population,
then (and only then) the outcome of the statistical significance test would
bear upon result replicability. Future samples drawn from the population
about which an inference would be drawn should yield somewhat compa-
rable results. But it ain’t so. In Cohen’s (1994) immortal words, the statis-
tical significance test “does not tell us what we want to know, and we so
much want to know what we want to know that, out of desperation, we
nevertheless believe that it does!” (p. 997).
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What Does pCALCULATED Mean?

The pCALCULATED estimates the probability of the sample statistic(s) (and
sample results even more extreme in their divergence from the null
hypothesis than our sample results), assuming (a) the sample came from a
population exactly described by the null hypothesis, and (b) given the sam-
ple size. Why must these two assumptions be invoked?

First, the sample size must be taken into consideration, because sam-
ple size impacts the precision of statistical estimates, and impacts the dis-
persion of the sampling distribution. If a sample result diverged wildly
from H0, the divergence may not be grossly unlikely, when sample size is
small. Small samples may not always be fluky and yield fluky and inaccu-
rate parameter estimates, but conversely, fluky statistics may certainly
occur when n is small. However, as sample size gets larger, estimation pre-
cision should increase, and so statistics that diverge from the null are less
and less likely.

Second, why must the null be assumed to describe the population?
Well, we are estimating the probability that the sample and its statistics
came from the population. Clearly, the population from which the sample
is presumably drawn must impact the results expected in the sample.

If we draw two samples from two populations with coefficients of
kurtosis parameters of –1.5 and +1.5, respectively, the most likely (not
guaranteed, but most likely) sample statistics are –1.5 and +1.5, respec-
tively. Similarly, if we draw three samples from a single population in
which the coefficient of skewness is 0.0, the most likely three sample sta-
tistics are equal (and all 0.0).

If we have four samples with statistic SDs of 0.75, 1.00, 1.25, and
1.33, we would obtain one pCALCULATED value if pCALCULATED was computed
under a premise that the parameter SDs were 0.75, 1.00, 1.25, and 1.33,
respectively. For the same sample statistic SDs, we would obtain a differ-
ent pCALCULATED value if pCALCULATED was computed under a premise that the
parameter SDs were equal.

Literally, infinitely many population parameters can be assumed. For
each of these infinitely many population assumptions, for a given set of
sample statistics (e.g., SDs of 0.75, 1.00, 1.25, and 1.33, respectively)
there is one single pCALCULATED value.
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We must assume one single population with given parameters, so that
there will be one single pCALCULATED value for a given set of sample statistics.
If we assume infinitely many populations, there are infinitely many equally
plausible and arguably correct values for pCALCULATED, and pCALCULATED

becomes mathematically “indeterminate.”
This discussion does not mean that we have to assume that H0

describes the population. We could obtain pCALCULATED as long as we
assumed any one set of population parameters. But the historical tradition
is to assume that the population is perfectly described by H0. And this
assumption does make pCALCULATE mathematically determinate, using the
procedures described in this chapter.

NHSST is one of the single most important concepts in statistics. Mas-
tery of this (somewhat convoluted) logic is imperative, so that the limita-
tions of NHSST will be truly understood.

Here are four questions that test your understanding of NHSST. Note
that answering these questions correctly does not require any math. These
are conceptual questions, testing your understanding of pCALCULATED as a
concept (i.e., real understanding or mastery, not rote memorization of
words or formulas):

1. Three studies, each involving three groups of 350 students, are con-
ducted. The medians in study A were 68, 92, and 120; in study B
were 52, 48, and 61; and in study C were 40, 50, and 60. Which of
the following correctly lists these studies in the order of largest to
smallest pCALCULATED?

A. A, B, and C B. B, C, and A
C. A, C, and B D. B, A, and C
E. C, A, and B

2. In each of three studies, SD1 = 6.8 and SD2 = 7.5. In study Gamma,
n = 100; in study Delta, n = 1,000; and in study Epsilon, n = 580.
Which of the following lists the studies from largest to smallest
pCALCULATED?

A. Delta, Epsilon, Gamma B. Epsilon, Delta, Gamma
C. Gamma, Epsilon, Delta D. Gamma, Delta, Epsilon
E. none of the above, because here pCALCULATED = 0.
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3. Four studies each include four groups of 25 participants. Given the
sample means listed below, which study would produce the
largest pCALCULATED?

A. 26, 38, 45, 50 B. 30, 31, 29, 30
C. 20, 22, 47, 49 D. 21, 58, 58, 58

4. Four studies were conducted to determine the correlation between
gender and response time on spatial tasks. In Study 1, 50 males
and 50 females were tested. In Study 2, 150 males and 150
females were tested. In Study 3, 25 males and 25 females were
tested. In Study 4, 200 males and 200 females were tested.
Remarkably, in all four studies, r = +0.61. Which of these four
studies had the smallest pCALCULATED value?

A. Study 1 B. Study 2
C. Study 3 D. Study 4

Here are three hints for addressing such questions.
First, as long as the numbers are reasonable (e.g., an SD is not

less than zero, r is not greater than +1 or less than –1), ignore the
statistic being evaluated. The logic of NHSST generalizes across all sta-
tistics, including statistics that are fictitious, or of which you have never
heard.

Second, compare pCALCULATED values as percentages, rather than pro-
portions. We are taught percentages in early elementary school, and
instinctively comprehend that 10% (p = 0.1) is larger than 5% (p = 0.05).
Nonmathematicians have greater intuitive understanding of percentages
than of proportions.

Third, convert pCALCULATED as a concept into its actual conceptual
meaning (i.e., more or less likely sample statistics, assuming that the sam-
ple originated in a population described by the null hypothesis). Whenever
you see (or hear) “smaller (or smallest) pCALCULATED,” think instead of “less
(or least) likely sample statistics.” Whenever you see (or hear) “bigger (or
biggest) pCALCULATED,” think instead of “more (or most) likely sample statis-
tics.”
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Some Key Concepts

Statistical significance testing does not evaluate result importance.
Valid deductive logic cannot contain in conclusions any information
missing from deductive premises, and because NHSST does not
require a declaration of the researcher’s personal values, p does not
contain any information about the value of results.

Nor does p evaluate result replicability (Cohen, 1994; Thompson,
1996). Therefore, because result replicability is important to establish,
so that we know our effect sizes are not serendipitous, other methods
discussed in subsequent chapters that help evaluate replicability are
important in quantitative research.

A given hypothesis test may yield a Type I error, or a Type II
error, but never both. Type II error is irrelevant once the null hypothe-
sis is rejected, because a Type II error is not possible in the presence of
a decision to reject, by definition. “What-if” analyses may be practi-
cally useful in selecting a desired sample size given an expected effect
size, such as r2. What-if analyses are also instructionally powerful in
helping us to realize that (a) a nonzero effect size will always be statis-
tically significant at some sample size, and (b) sample size is a very
important determinant of pCALCULATED.

��� Reflection Problems ���

1. What is asserted by saying that “pCALCULATED = 0.000”? Can pCALCULATED

ever really equal zero? Should anyone ever report in an article or disserta-

tion that “pCALCULATED = 0.000”?

2. Use the Figure 6.3 spreadsheet layout to obtain pCALCULATED for the follow-

ing research study.

A researcher, using a single predictor variable, conducts an

n = 10,001 study to predict how long people live. The r2 was

100.0%.

What is pCALCULATED whenever the r2-type effect size is perfect? What

implications does this pCALCULATED have as regards your ability to publish

results that allow perfect prediction of important outcomes, such as how

long people will live?
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3. Either using the Figure 6.3 spreadsheet, or the spreadsheet suggested by

Thompson and Kieffer (2000), find the contiguous transitional sample

sizes (e.g., n = 22, n = 23) at which the following effect sizes are and are

not statistically significant: r2 = 0.1%, 1%, 2%, 3%, 4%, 5%, 10%, 25%,

50%, 75%, 85%, 95%.
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7

Practical
Significance

M
ost of the well-known statistical analyses (e.g., Student’s t,
Pearson’s r, Spearman’s ρ), and their associated statistical sig-
nificance tests, were developed roughly a century ago. But
criticisms of these accompanying NHSST applications are

almost as old as the methods themselves (cf. Berkson, 1938; Boring,
1919). Harlow, Mulaik, and Steiger (1997) have provided a balanced
and comprehensive treatment of whether journal editors should ban statis-
tical significance tests in their book What If There Were No Significance
Tests?

The criticisms have been presented with increasing frequency over
recent decades (Anderson, Burnham, & Thompson, 2000). The concerns
have been published in disciplines as diverse as economics (e.g., Ziliak &
McCloskey, 2004), education (e.g., Carver, 1978; Thompson, 1996), psy-
chology (e.g., Cohen, 1994; Schmidt, 1996), and the wildlife sciences (e.g.,
Anderson et al., 2000).

To convey the tenor of the commentary of critics, Schmidt and Hunter
(1997) can be cited as arguing that “Statistical significance testing retards
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the growth of scientific knowledge; it never [emphasis added] makes a
positive contribution” (p. 37). Rozeboom (1997) was equally emphatic:

Null-hypothesis significance testing is surely the most bone-headedly mis-
guided procedure ever institutionalized in the rote training of science stu-
dents. . . . [I]t is a sociology-of-science wonderment that this statistical
practice has remained so unresponsive to criticism. . . . (p. 335)

However, NHSST has been defended with corresponding vigor by advo-
cates (cf. Abelson, 1997; Robinson & Wainer, 2002).

The criticisms of NHSST have substantially affected scholars’ views of
what counts as evidence in quantitative research. Today, the social sci-
ences have now moved toward the view that indices of practical signifi-
cance should be reported and interpreted. This movement was largely
influenced by the Task Force on Statistical Inference, appointed by the
American Psychological Association (APA) in 1996. The Task Force pub-
lished recommendations three years later (Wilkinson & APA Task Force
on Statistical Inference, 1999).

The Task Force recommendations, in turn, affected the reporting
expectations presented in the revised APA (2001) Publication Manual,
used by more than 1,000 journals, although it has also been argued that
the Manual should have gone further in promulgating expectations for
changed reporting and interpretation practices (Fidler, 2002). The field of
medicine has moved further and faster in emphasizing practical signifi-
cance, in part due to the cohesion of editors of medical journals who came
together to articulate uniform author guidelines for the discipline as a
whole (International Committee of Medical Journal Editors, 1997).

The editors of several dozen social science journals have articulated
expectations that surpass those of the APA Publication Manual (e.g.,
Snyder, 2000). Indeed, as Fidler (2002) recently observed, “Of the major
American associations, only all the journals of the American Educational
Research Association have remained silent on all these issues” (p. 754).

Two forms of evidence for practical significance have been empha-
sized in the APA Task Force report, the Publication Manual, and the sup-
plementary editorial policies of several dozen journal editors: effect sizes
and confidence intervals. After discussing these in turn, we will also con-
sider the use of them together.
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��� Effect Sizes

The APA Task Force on Statistical Inference urged authors to “Always
[emphasis added] provide some effect-size estimate when reporting a p
value” (Wilkinson & APA Task Force, 1999, p. 599). The Task Force fur-
ther emphasized, “reporting and interpreting effect sizes in the context of
previously reported effects is essential [emphasis added] to good research”
(p. 599). And the 2001 APA Publication Manual labeled the “failure to
report effect sizes” as a “defect in the design and reporting of research”
(p. 5). Today, because such encouragements to report effects have had
demonstrably limited impact (Vacha-Haase, Nilsson, Reetz, Lance, &
Thompson, 2000), 24 journals (cf. K. Harris, 2003; Thompson, 1994a)
have gone further and now explicitly require the reporting of effect sizes.
Unfortunately, textbooks still emphasize NHSST over effect sizes (Capraro
& Capraro, 2002). However, as Grissom and Kim (2005) emphasized,
journal and dissertation readers “have a right to see estimates of effect
sizes. Some might even argue that not reporting such estimates in an
understandable manner . . . may be like withholding evidence” (p. 5).

As previously noted in Chapter 6, an effect size is a statistic quantify-
ing the extent to which sample statistics diverge from the null hypothesis.
For a study of the relationship between handedness (right or left) and gen-
der, using the φ coefficient, the ubiquitous nil null might be H0: φFRESHMEN =
φSOPHOMORES = φJUNIORS = φSENIORS. If the statistic φ coefficients were all 0.73 in
all four groups, the effect size for the study would be zero. If the four φ
coefficients were 0.69, 0.69, 0.69 and 0.70, the effect size would be non-
zero, but small. The effect size would be bigger if the four statistic φ coeffi-
cients were 0.50, 0.55, 0.60, and 0.65. And the effect size would be
considerably larger if the four statistics were –0.95, –0.05, 0.45, and 0.88.

Why can’t pCALCULATED values themselves be used as indices of practical
significance? One reason is that pCALCULATED values are confounded indices
of effect, because both effect size and sample size impact pCALCULATED. As
previously noted in Chapter 6,

Because p values are confounded indices, in theory 100 studies with varying
sample sizes and 100 different effect sizes could each have the same single
pCALCULATED, and 100 studies with the same single effect size could each have
100 different values for pCALCULATED. (Thompson, 1999a, pp. 169–170)
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Furthermore, as Good and Hardin (2003) explained,

[T]he p value is a random variable that varies from sample to sample. . . .
Consequently, it is not appropriate to compare the p values from two distinct
experiments, or from tests on two variables measured in the same experi-
ment, and declare that one is more significant than the other. (p. 100)

These are exactly the reasons why effect sizes, and not pCALCULATED values,
are used in meta-analyses.

There are literally dozens of effect sizes. Kirk (1996) cataloged 41,
and his list did not include some indices proposed by Carl Huberty and his
colleagues (Hess, Olejnik, & Huberty, 2001; Huberty & Holmes, 1983;
Huberty & Lowman, 2000)! Furthermore, more effect size variations will
doubtless be proposed now that the social sciences have moved toward an
increased emphasis on practical significance.

Some of the statistics that have already been discussed are actually
themselves effect sizes. For example, for the null H0: r = 0 (or equivalently,
H0: r2 = 0), the actual statistic r (or r2) computed in the sample is an effect
size for this null.

Here we will not cover all the numerous possibilities. For exposure to
the full landscape, the reader is referred to Grissom and Kim (2005), Kirk
(1996, 2003), or Rosenthal (1994). However, the most commonly-used
effect sizes will be considered.

The effect size indices presented here can be organized into three cate-
gories. A few effect sizes (e.g., group overlap indices, Huberty & Holmes,
1983; number-needed-to-treat, Schulzer & Mancini, 1996; probability of
superiority, Grissom, 1994) fit instead into a fourth, “miscellaneous” cate-
gory. But three categories work for the effects considered here.

One dimension for the organizational framework involves whether
the indices are score-world (i.e., in an unsquared metric) or area-world
(i.e., in a squared metric). As noted in previous chapters, some statistics
are in the score world (e.g., MX, MdnX, SDX, coefficients of skewness and
kurtosis, r), whereas others are in the area world (e.g., SOSX, SDX

2, r2).
Similarly, some test statistics are in an unsquared metric (e.g., the z and t
distributions), whereas others are in a squared metric (e.g., F, χ2). By the
same token, some effect size indices are in the score world, whereas others
are in the area world.
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A second dimension for the categorization focuses on whether the
effect sizes are “uncorrected” estimates, focusing on sample effects, or
“corrected” (or “adjusted”) estimates, attempting to take into account
sample features (e.g., n) that impact the flukiness of the sample and its
estimates. So, here we will consider three classes of effects: (a) uncor-
rected, standardized difference effect sizes; (b) uncorrected, variance-
accounted-for effect sizes; and (c) corrected, variance-accounted-for effect
sizes.

Uncorrected, Standardized Difference Effect Sizes

In medicine, researchers conventionally report effect sizes for experiments
as mean (or median, or proportion) differences between treatment and
control groups. For example, physicians will report that, on average,
adults who take vitamin pills daily live 2 years longer than adults who do
not do so. Or physicians will report that there are half as many heart
attacks among adults who take 81 milligrams of aspirin every day than
among adults who do not do so.

Medical researchers have the advantage that their mean, or median, or
proportion differences are measured in natural and universally accepted
metrics. For example, everywhere in the world cholesterol is measured in
milligrams per deciliter. And everywhere in the world disease mortality is
measured in deaths per thousand patients. Moreover, these measures have
known parameter standard deviations.

But in the social sciences, there are no universally accepted measures
of our constructs. For example, there may be 5 widely accepted measures
of academic achievement or 10 widely accepted measures of self-concept.
And these measures may have different parameter standard deviations,
because some achievement (or self-concept) tests are harder or are scaled
differently than others.

A fundamentally important aspect of science is the ability to compare
results across studies. The comparability of results allows the cumulation
and integration of findings across studies. And it is primarily through the
integration of our new results with prior related results that we can evalu-
ate the replicability of our own new results. As emphasized in Chapter 6,
statistical significance is not a viable vehicle for testing result replicability.
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But how can results across studies be compared if the dependent (or
criterion) variables are measured in different metrics? As noted in Chapter
2, in statistics, when we divide by a number, we are removing from our
answer the influence of whatever we are using to divide. For example, we
divide by n when computing the mean so that we can compare means
apples to apples across two or more samples with different sample sizes.
And we divide the mean deviation scores (xi) by the group SD to obtain
standardized (i.e., SD is removed) deviation scores, zi, from which we have
removed SD.

Two popular standardized effect sizes (i.e., Glass’ ∆, and Cohen’s d)
compute a standardized (i.e., SD is removed) mean difference by dividing
the mean difference of the experimental and the control groups by some
estimate of the σ of the outcome variable. Of course, a standardized
median difference might also be computed. Because they have both been
standardized, ∆ and d are in the standardized score world.

By the way, note the use for the Glass effect size of a Greek letter to
represent, in this case, a sample statistic. This is just another effort by stat-
isticians to be confusing. Usually Greek letters are used only for parame-
ters.

Glass’

Historically, researchers attempted to integrate results across related stud-
ies in various ways, including averaging p values and especially “vote
counting” the number of statistically significant versus statistically
nonsignificant results (Kulik & Kulik, 1992). However, because pCALCULATED

values are confounded jointly by effect sizes and sample sizes, researchers
soon realized that these strategies were doomed to create irreconcilable,
contradictory integrations of previous findings.

Building on other strategies for integrating results, Glass (1976; Glass,
McGaw, & Smith, 1981) proposed methods for the meta-analytic integra-
tion of studies using the effect size ∆. Glass reasoned that the experimental
intervention could not have impacted dependent variable dispersion in the
control group, because the control group presumably received no interven-
tion. Therefore, he reasoned that the effect size should be computed as
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∆ = (ME – MC) / SDC (7.1)

where SDC is the standard deviation of the outcome variable scores of only
the control group.

Cohen’s d

Cohen (1969, 1988), on the other hand, noted that the precision of the
estimate of the σ, which is critical to the correct estimation of the effect
size, would be enhanced by using both the experimental and the control
group to compute the SD, because nE + nC > nC. A weighted, pooled aver-
age SD can be computed as a weighted (taking into account group sizes)
average of the outcome variable dispersions in the two groups, using a for-
mula such as Equation 6.4 to compute SDPOOLED

2 and, from that result,
SDPOOLED. Then we can obtain

d = (ME – MC) / SDPOOLED (7.2)

versus d

The comparison of ∆ versus d affords the opportunity to emphasize the
fundamentally important point that statistics is about thinking, rather
than about black-versus-white decisions or the rote memorization of for-
mulas. As Huberty and Morris (1988, p. 573) argued, “As in all statistical
inference, subjective judgment cannot be avoided. Neither can reasonable-
ness!”

When should researchers reflectively select ∆ as an effect size? First, if
sample size is huge, there may be relatively little gain in precision in esti-
mating σ by combining both groups. Remember, too, that the impacts on
precision from increasing sample size are not equal for each change in
sample size, and may be small at large sample sizes. Second, if theory or
previous empirical results suggest that the intervention impacts not only
central tendency, but dispersion as well, then ∆ may be a preferred choice.
It is not unusual for interventions, such as educational or psychological
treatments, to affect both location and dispersion.
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Conversely, if sample size is small, and the intervention seems not to
have affected dispersion, Cohen’s d may be the preferred effect size. Of
course, if both ∆ and d are computed and found to be comparable, the
researcher can be more assured that the effect estimate is not an artifact of
effect size choice.

Uncorrected, Variance-Accounted-for Effect Sizes

Effect sizes for various research designs can also be computed as analogs
of r2. For example, for the two-group problem associated with the inde-
pendent t test, a variance-accounted-for effect size can be computed as the
squared point–biserial correlation (rpb

2) between the dichotomous group
membership variable and the outcome variable. And as we shall see in
subsequent chapters (e.g., Chapter 10), related effect sizes can be com-
puted in situations involving three or more groups and an intervally-scaled
dependent variable.

Finally, when all the variables are intervally scaled, r2 can be com-
puted as an effect size for the bivariate case, as noted previously. And
when multiple intervally-scaled variables are used to predict a single
intervally-scaled outcome variable, a related variance-accounted-for effect
size (R2) can be computed, as we shall see in Chapter 8.

Of course, just as r can be converted into r2, and vice versa, score-
world d and r can be converted into each other’s metrics. For example,
Cohen (1988, p. 24) provided the following formula for deriving r from d
when the groups of interest are of approximately the same size:

r = d / [(d2 + 4)0.5] (7.3)

Thus, for the effect size that Cohen characterized as “medium” (i.e.,
d = |0.50|) with respect to typicality, based on his subjective impression of
the social science literature as a whole, we have

0.5 / [(0.52 + 4)0.5]
0.5 / [(0.25 + 4)0.5]

0.5 / [4.250.5]
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0.5 / 2.06
r = 0.242,

and r2 = 0.058

For what Cohen deemed a “large” d (i.e., |0.8|), the d converts to an r of
0.388, and an r2 of 15.0%. For what Cohen deemed a “small” d (i.e.,
|0.2|), the d converts to an r of 0.097, and an r2 of 0.9%. Aaron, Kromrey,
and Ferron (1998) provided more detail on this d-to-r conversion for cases
in which group sizes are disparate.

Conversely, Friedman (1968, p. 346) proposed the following formula
to approximate d from r:

d = [2(r)] / [(1 – r2)0.5] (7.4)

For r = 0.242 we have

[2(0.242)] / [(1 – 0.2422)0.5

0.484 / [(1 – 0.2422)0.5

0.484 / [(1 – 0.059)0.5

0.484 / 0.9410.5

0.484 / 0.970
d = 0.499

Corrected, Variance-Accounted-for Effect Sizes

As explained in Chapter 6, all samples have some degree of flukiness. The
only way to eliminate flukiness is to collect population rather than sample
data.

The bottom line is that some of the score variance, SD2, in the sample
data reflects true variance that exists in the population (i.e., σ2). But some
of the score variance (SD2) in the sample does not exist in the population,
and instead reflects the flukiness introduced by the sampling process. This
latter score variance is called sampling error variance.

Note that “sampling error variance” should not be confused with
other statistical phrases that you may hear, such as “measurement error
variance” or “model specification error.” Even though all three phrases
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include the word “error,” mainly to try to confuse everybody, the three
terms are conceptually discrete from each other (Thompson, 2003).

Every sample has its own, unique sampling error variance (i.e., vari-
ance that does not exist in the population, and also differs from the sam-
pling error found in other samples). That is, samples are like people. And,
like people, some samples are wildly weird, and some samples are only a
little bit weird.

Sampling error variance consistently tends to inflate effect sizes. This
is because when we compute the r2 (or rpb

2, or Spearman ρ2, or R2) for sam-
ple data, the computations do not take into consideration the fact that
some of the sample score variance does not exist in the population, and is
instead peculiar to the given sample.

But, if we could somehow estimate how much the sampling error vari-
ance in a given sample was inflating the effect size, we could then remove
this estimated distortion, and compute a “corrected” or “adjusted” effect
size that better estimated the effect size in the population. Happily, we
know the three factors that influence sampling error variance, and so we
can estimate sampling error variance, and we can then estimate corrected
effect sizes.

First, as suggested in the previous chapter, there is more sampling
error variance in samples with smaller ns than in samples with larger ns.
So every formula for corrected effect sizes from among the dozens of pos-
sible choices must logically include n as an element.

Second, there is more sampling error in samples with more variables
than in samples with fewer measured variables. As explained in Chapter 2,
an outlier is a case whose data disproportionately impacts statistical esti-
mates. Outliers are not bad, evil people who distort all statistics for all
variables. Instead, probably everybody is an outlier on some statistics for
some variables, although some people may be outliers on a lot of statistics
for a lot of variables.

The implication is that for a fixed n of cases, as we sample the scores
on more variables, we provide greater opportunity for the weirdnesses of
people to be manifested. So, logically, any formula for corrected effect
sizes must take into account the number of variables being measured.

Third, for a given n and number of measured variables, there is more
sampling error in samples drawn from populations with smaller effect
sizes than in samples drawn from populations with larger effect sizes. This
dynamic is harder to follow intuitively.
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Thompson (2002a) explained this dynamic via discussion of the
bivariate case in which the Pearson r is being estimated in sample data.
Imagine a population scattergram, where ρ is +1.0. In this scattergram bil-
lions of asterisks will define an upward-sloping perfect line. Thompson
(2002a) then noted,

In this instance, even if the researcher draws ridiculously small samples, such
as n = 2 or n = 3, and no matter which participants are drawn, we simply
cannot incorrectly estimate the variance-accounted-for effect size. That is,
any two or three or four people will always define a straight line in the sam-
ple scattergram, and thus [sample] r2 will always be 1.0. (p. 68)

The implication is that any formula used to estimate a corrected effect
size must include the estimated or assumed population effect size as an ele-
ment. Of course, this suggests the paradox that if we knew the population
effect size, we would not need the corrected effect size estimate, and if we
lack knowledge of the population effect size, we cannot accurately correct
the sample effect size.

In practice we deal with this paradox by presuming that the sample
effect size is a reasonable estimate of the population effect, and we correct
the sample estimate with itself. Alternatively, we could take an average of
previously reported effect sizes in the related literature, and use this value
to correct our sample estimate.

Ezekiel (1930) proposed one frequently used correction formula that
can be used with r2 (or with the multiple regression R2). This correction is
automatically produced when the SPSS REGRESSION procedure is executed
to compute the Pearson r2, and so will be the only focus in the present
chapter, although dozens of related correction formulas have been
proposed and this formula is not without limitations (Carter, 1979;
Rencher & Pun, 1980). The “corrected” or “adjusted” variance-
accounted-for estimate for a squared correlation coefficient can be com-
puted as

1 – ((n – 1) / (n – v – 1))(1 – r2) (7.5)

where n is the sample size and v is the number of predictor variables. The
equation can be equivalently expressed as
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r2 – ((1 – r2)(v / (n – v –1))) (7.6)

Notice that, as expected, the correction formula contains the expected
three elements, and only these, as elements that change across samples.
For the Pearson r2 situation, the number of predictor variables is always
v = 1, and Equation 7.5 simplifies to

r2* = 1 – ((n – 1) / (n – 2))(1 – r2) (7.7)

where r2* is the corrected variance-accounted-for effect size.
The corrected estimate is sometimes called the “shrunken” r2, because

r2* is always less than or equal to r2. And the difference in the uncorrected
and the corrected estimate divided by the uncorrected estimate quantifies
the percentage of the sampling error variance’s impact on the effect esti-
mate. For example, if r2 = 50.0% and r2* = 40.0%, sampling error is esti-
mated to have produced 20.0% [(50.0% – 40.0%) / 50.0%] of the
original uncorrected effect size estimate.

Table 7.1 presents a range of values for r2 and the corrections associ-
ated with various sample sizes. Notice that the impacts of increasing sam-
ple size are again not equal. For example, for r2 = 50.0% and n = 5, r2* =
33.3%, which represents a shrinkage of 0.167, or 33.3% of the original r2

value. For r2 = 50.0% and n = 6, the shrinkage is 0.125, or 25.0% of the
original r2 value. For r2 = 50.0% and n = 7, the shrinkage is 0.100, or
20.0% of the original r2 value. Each increase in sample size brings reduced
shrinkage, but less and less of an improvement with each increase.

Table 7.1 also indicates that the amount of correction is not uniform
throughout the range of estimated r2 values. When the estimated r2 value is
large (e.g., approaching |1.0|), the shrinkage will be quite small, even when
sample size is relatively small. But when r2 is small (e.g., 1.00%) and even
at n = 320, shrinkage is 31.1% of the original estimate.

Conversely, this discussion can be reframed as reflecting the fact that
even when the population effect size is zero, the expected sample r2 is not
zero. Equations 7.6 or 7.7 can be plugged into a spreadsheet, and “what-
if” analyses can be conducted to solve for r2* = 0.0 for various ns. For the
Pearson r2, for example, if n = 8 and the population parameter is zero, the
expected sample statistic at this n is r2 = 14.3%. If n = 7 and the popula-
tion parameter is zero, the expected sample statistic is r2 = 16.7%. If n = 6
and the population parameter is zero, the expected sample statistic is
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TABLE 7.1. Corrected Estimates of r2 for Various Sample Sizes and
Original Uncorrected Estimates

r2 n r2* Shrinkage
Percentage
shrinkage

0.50 5 0.333 0.167 33.3%
0.50 6 0.375 0.125 25.0%
0.50 7 0.400 0.100 20.0%
0.50 8 0.417 0.083 16.7%
0.50 9 0.429 0.071 14.3%
0.50 10 0.438 0.063 12.5%
0.50 20 0.472 0.028 5.6%
0.50 80 0.494 0.006 1.3%
0.50 320 0.498 0.002 0.3%
0.25 5 0.000 0.250 100.0%
0.25 6 0.063 0.188 75.0%
0.25 7 0.100 0.150 60.0%
0.25 8 0.125 0.125 50.0%
0.25 9 0.143 0.107 42.9%
0.25 10 0.156 0.094 37.5%
0.25 20 0.208 0.042 16.7%
0.25 80 0.240 0.010 3.8%
0.25 320 0.248 0.002 0.9%
0.125 5 –0.167 0.292 233.3%
0.125 6 –0.094 0.219 175.0%
0.125 7 –0.050 0.175 140.0%
0.125 8 –0.021 0.146 116.7%
0.125 9 0.000 0.125 100.0%
0.125 10 0.016 0.109 87.5%
0.125 20 0.076 0.049 38.9%
0.125 80 0.114 0.011 9.0%
0.125 320 0.122 0.003 2.2%
0.0625 5 –0.250 0.313 500.0%
0.0625 6 –0.172 0.234 375.0%
0.0625 7 –0.125 0.188 300.0%
0.0625 8 –0.094 0.156 250.0%
0.0625 9 –0.071 0.134 214.3%
0.0625 10 –0.055 0.117 187.5%
0.0625 20 0.010 0.052 83.3%
0.0625 80 0.050 0.012 19.2%
0.0625 320 0.060 0.003 4.7%
0.03125 5 –0.292 0.323 1033.3%
0.03125 6 –0.211 0.242 775.0%
0.03125 7 –0.163 0.194 620.0%
0.03125 8 –0.130 0.161 516.7%
0.03125 9 –0.107 0.138 442.9%
0.03125 10 –0.090 0.121 387.5%
0.03125 20 –0.023 0.054 172.2%
0.03125 80 0.019 0.012 39.7%
0.03125 320 0.028 0.003 9.7%
0.01 320 0.007 0.003 31.1%
0.01 640 0.008 0.002 15.5%
0.01 1280 0.009 0.001 7.7%



r2 = 20.0%. And if n = 5 and the population parameter is zero, the
expected statistic r2 = 25.0%!

Note also that corrected variance-accounted-for effect sizes can
become negative, even though the r2* estimates are theoretically in a
squared metric. Such corrected estimates suggest the use of a ridiculously
small sample size for a given research study.

Corrections such as Equations 7.5 and 7.6 make adjustments to esti-
mates of the population parameter. If all studies invoked the same correc-
tion of this sort, researchers would be comparing results apples to apples
in the world of the population.

An alternative corrects the sample statistic to estimate effect size in a
subsequent sample (e.g., Herzberg, 1969). Corrections of this ilk honor
the reality that researchers never have the population, and compare their
results across studies. These corrections tend to be more severe, because
the adjustment must take into account the sampling error in two samples,
rather than in only one sample (Snyder & Lawson, 1993).

Interpretation of Effect Sizes

Some researchers interpret single-study effect sizes by invoking Cohen’s
(1988) benchmarks for “small,” “medium,” and “large” effects. However,
Cohen intended these only as general guidelines, mainly useful when
working in unexplored territory, and he emphasized that

these proposed conventions were set forth throughout with much diffidence,
qualifications, and invitations not to employ them if possible [emphasis
added]. . . . They were offered as conventions because they were needed in a
research climate characterized by a neglect of attention to issues of [effect
size] magnitude. (p. 532)

As noted elsewhere, “if people interpreted effect sizes [using fixed
benchmarks] with the same rigidity that α = .05 has been used in statistical
testing, we would merely be being stupid in another metric” (Thompson,
2001, pp. 82–83).

As emphasized in Chapter 5 with respect to the aspirin/heart attack
study, a very, very small, but replicable effect size for a very important
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outcome can be strikingly important. In the same vein, Gage (1978)
pointed out that even though the relationship between cigarette smoking
and lung cancer is relatively “small” (i.e., r2 = 1% to 2%),

Sometimes even very weak relationships can be important. . . . [O]n the basis
of such correlations, important public health policy has been made and mil-
lions of people have changed strong habits. (p. 21)

Isolating a very, very small impact on death rates from a previously incur-
able and potentially pandemic disease (e.g., Ebola) will generally be
deemed more important than finding a very, very large effect for a new
treatment for a nonfatal disease for which numerous treatments are
already widely available (e.g., jock itch).

At least in relatively established areas of research, “there is no wisdom
whatsoever in attempting to associate regions of the effect-size metric with
descriptive adjectives such as ‘small,’ ‘moderate,’ ‘large,’ and the like”
(Glass, McGaw, & Smith, 1981, p. 104). Or, as Cohen (1977) himself
said, “These qualitative adjectives . . . may not be reasonably descriptive
in any specific area. Thus, what a sociologist may consider a small effect
may be appraised as medium by a clinical psychologist” (p. 277).

Another complication is that effect sizes must be interpreted within
the context of a given unit of analysis. Smaller effects for clusters of people
(e.g., schools, hospitals) may be more noteworthy than identical effect
sizes for individuals, because more people may be impacted by smaller
effects at a larger unit of analysis (McCartney & Rosenthal, 2000).

However, it is also important to realize that what is called the ecologi-
cal fallacy may compromise comparisons of effect sizes across units of
analysis. For example, W. S. Robinson (1950) illustrated how effects even
for the same data can differ not only in magnitude across units of analysis
(e.g., individuals versus states), but in direction as well!

In any case, single-study effect sizes should be interpreted via direct,
explicit comparison of the effects in related research. As Schmidt (1996)
noted,

Meta-analysis . . . has revealed how little information there typically is in any
single study. It has shown that, contrary to widespread belief, a single pri-
mary study can rarely resolve an issue or answer a question. (p. 127)
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Even single studies ought to be interpreted within a meta-analytic per-
spective, using meta-analytic thinking (cf. Cumming & Finch, 2001).
Thompson (2002b) defined meta-analytic thinking as

both (a) the prospective formulation of study expectations and design by
explicitly invoking prior effect sizes and (b) the retrospective interpretation of
new results, once they are in hand, via explicit, direct comparison with the
prior effect sizes in the related literature. (p. 28, emphasis added)

Such comparisons will be facilitated once everyone routinely reports effect
sizes. Of course, the comparisons require given effects to be converted into
a common metric.

��� Confidence Intervals

The 2001 APA Publication Manual argued that confidence intervals (CIs)
are “in general, the best reporting strategy. The use of confidence intervals
is therefore strongly recommended” (p. 22; emphasis added). These admo-
nitions are not new. For example, five decades ago Jones (1955) argued
that

an investigator would be misled less frequently and would be more likely to
obtain the information he seeks were he to formulate his experimental prob-
lems in terms of the estimation of population parameters, with the establish-
ment of confidence intervals about the estimated values, rather than in terms
of a null hypothesis against all possible alternatives. (p. 407)

However, empirical studies of journals show that confidence intervals
are published very infrequently (Finch, Cumming, & Thomason, 2001;
Kieffer, Reese, & Thompson, 2001). And as Thompson (2002b) sug-
gested, “It is conceivable that some researchers may not fully understand
statistical methods that they (a) rarely read in the literature and (b) infre-
quently use in their own work” (p. 26).

In Chapter 6 I noted that a statistic could be divided by its SE to yield
calculated t (or Wald statistic, or critical ratio). This ratio and its varia-
tions can be reexpressed in terms of a variety of related test statistics (e.g.,
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F, χ2). The ratio of a statistic to its standard error can be used to evaluate
the statistical significance of a statistic using the nil null that the related
parameter is zero.

But the standard error can also be used for descriptive purposes. As
emphasized in Chapter 6, when the SE is large in relation to the value of a
statistic, we know that the precision of our estimate may be compromised.

Indeed, the previous logic suggests the potential utility of creating
standard error bars by adding and subtracting the SE from the point esti-
mate of the statistic:

SE bar = statistic ± (k)SESTATISTIC (7.8)

where k is some multiplicative constant and is often either 1 or 2. We
would vest more confidence in the precision of point estimates when the
standard error bars were narrower. In fact, such standard error bars are
reported quite frequently in medical research (Cumming & Finch, 2001,
2005).

However, as noted previously, the APA Task Force advocated in par-
ticular the use of confidence intervals, which are related to standard error
bars, but are a bit different. A confidence interval (CI) for a statistic is

CICONFIDENCE % = statistic ± TSCRITICAL(SESTATISTIC) (7.9)

where TSCRITICAL is the critical value of a relevant test statistic at the study’s
df and α.

Confidence intervals for statistics can be easily derived using modern
statistical software. But here we will explore some specific examples to
make these procedures more concrete. For example, the CI for M with
population variance assumed known and either large sample size or popu-
lation normality assumed is computed as

CIM = M ± zCRITICAL(SEM) (7.10)

Let’s say that a group of 30 statistics students have M = 60.0 (SD =
10.0) on a measure of clinical depression for which higher scores indicate
greater depression. The parameter mean score on the measure is known to
be 50.0 across all types of adults (e.g., students, nonstudents, clerics,
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elected politicians), where scores below 50.0 indicate less than average
depression.

Based on our point estimate of the mean (i.e., 60.0), it appears that
the students are, on the average, somewhat depressed. Of course, this does
not indicate that all the students are depressed. Indeed, if the scores were
normally distributed in our sample—because in a normal distribution
99% of the scores fall between M ± 3(SD)—the sample scores would
range between roughly 30.0 and 90.0, and some students would have
lower than average or expected depression.

However, we know that our statistic point estimate is not perfectly
precise, because we are working with a sample. Thus, we cannot conclude
that all statistics students have a mean depression score of exactly 60.0.

We can compute the SEM to obtain some idea about the precision of
our point estimate. For these data we have SEM = SDX / n0.5, or 10.0 / 300.5

= 10.0 / 5.48 = 1.82. The result reflects an expectation that the standard
error of the mean (i.e., SD of the sampling distribution) will be roughly
1.82 if we draw repeated samples of n = 30 from a population in which σ
= 10.0.

For n of at least 30, one plausible test statistic distribution is the z test
statistic distribution (not to be confused with a sample distribution of z
scores). To construct a CI at a given confidence level, we compute the
complement of the desired confidence level, and then divide by 2. For
example, if we seek a 95% confidence interval, we need the z test statistic
for [(1 – 0.95) / 2], or 0.025. The necessary value can be obtained in Excel
with the command

=NORMINV(0.025,0,1)

which returns a z test statistic value of 1.96. Thus, the 95% CI for our
mean of 60.0 equals 60.0 ± 1.96(1.82) = 60.0 ± 3.57, or [56.4, 63.6].

Let’s say instead that we had sought a 68.4% confidence interval for
our estimated mean. Inputting the related information into Excel yields a z
test statistic of 1.00. Thus, the 68.4% CI would be [58.2, 61.8]. The stan-
dard error bar for our mean is also 58.2 to 61.8. The implication is that
error bars about the mean created by ±1(SEM) are equivalent to 68.4%
confidence intervals, and vice versa.

202 FOUNDATIONS OF BEHAVIORAL STATISTICS



Misconceptions about CIs

Three common misconceptions about confidence intervals should be
avoided. First, some researchers, either consciously or unconsciously inter-
pret CIs constructed using large confidence levels (e.g., 90%, 95%, 99%)
as if the intervals yield a result involving 100% certainty. The fallacy of
this misinterpretation is obvious: although 95% is close to 100%, 95%
simply does not equal 100%.

If I put only one bullet in a six-shot revolver, randomly spin the cylin-
der, point the gun at you, and pull the trigger, there is a 16.7% probability
that you will be shot, and an 83.3% probability that you will not be shot.
Would it make a difference to you if I was shooting at you with a revolver
with which you were 83.3% likely to be safe, or with a different revolver
with which you were 100.0% likely to be safe? Do not confuse these two
different revolvers, and do not confuse 95% probability with 100% cer-
tainty.

Second, some researchers erroneously believe that confidence intervals
are just null hypothesis statistical significance tests in a different guise
(e.g., Knapp & Sawilowsky, 2001). One basis for clearly discriminating
between NHSST and CI use involves the fact that you can construct confi-
dence intervals completely absent a null hypothesis, but you simply cannot
do NHSST without a null hypothesis (Thompson, 2001).

The confusion may arise because asking whether a CI, constructed at
a confidence level 1.0 – α, does or does not subsume a given parameter
does always yield an outcome equivalent to either rejecting or not rejecting
the related null hypothesis. For example, if we have MIQ = 104.27 (SDIQ =
15.0) of n = 50 left-handed people, the SEM is 2.12. In a two-tailed,
nondirectional test of whether 104.27 equals an IQ of 100, tCALCULATED is
2.012.

In other words, our sample M is 2.012 standard errors distant from
100. The tCRITICAL value at α = 0.05 is 2.0090. The pCALCULATED is 0.0496.
We reject H0: µ = 100. The corresponding 95% confidence interval is
[100.0, 108.5]. Note that the lower boundary of the 95% CI is near our
hypothesized value, just as TSCALCULATED and TSCRITICAL are close. Both sets
of results show that the sample M is at the boundary of a result leading to
a decision to reject H0 at α = 0.05.

But the thoughtful interpretation of CIs usually does not involve eval-
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uating whether a given interval subsumes an hypothesized parameter.
Instead, the most thoughtful use of CIs bases interpretation upon compari-
son of CIs for parameter estimates across studies. The beauty of such inte-
grative comparisons is that by comparing CIs across studies (not by
evaluating CIs by whether they subsume an hypothesized expectation) we
will eventually discover the true parameter, even if our initial expectations
are wildly wrong (Schmidt, 1996)!

Third, some researchers interpret a CI in a given study as if they were
X% certain that their particular single interval captured the population
parameter. But the certainty level involved in constructing a given sample
CI applies to the construction of infinitely many CIs drawn from a popula-
tion, and not to the single CI constructed in a single sample.

Figure 7.1 illustrates what CIs do, and what CIs do not do. Figure 7.1
was created using one of the many modules in the Exploratory Software
for Confidence Intervals (ESCI) developed by Geoff Cumming (see
Cumming & Finch, 2001, 2005).

For the present example, a population of normally-distributed scores,
with µ = 50.0 and σ = 10.0, has been created. This population is portrayed
in the topmost portion of Figure 7.1

Samples of n = 15 are randomly drawn from the population. “Ran-
domly drawn” means that in a given draw all the remaining, undrawn
cases in the population are equally likely to be selected. However, as noted
in Chapter 3, random sampling does not mean that every possible score in
a normally-distributed population is equally likely to be drawn.

The first set of 15 scores is represented by small circles at the top of
the “Successive samples” section of Figure 7.1. Note that in this sample, 1
score of roughly 50 was drawn, as well as 1 extreme score of almost 78.

The 95% CI for the mean is presented immediately below the 15 cir-
cles representing the scores in the first sample. The MX for the first sample
was roughly 56. The 95% CI for the statistic mean of ~56 for the first
sample ranged from just below 50 to ~62.

The bottom portion of Figure 7.1 presents 25 95% CIs for the mean.
Notice that the sample means bounce around a fair amount. This merely
reflects the expected influences of sampling error variance. The SEM would
be smaller if (a) n was larger, or (b) σ (i.e., the population score standard
deviation) was smaller. Indeed, if σ was zero, the SEM would be zero at
every sample size!
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Of course, each of the 25 sample means is associated with an indepen-
dent, randomly drawn sample. The implication is that each of the por-
trayed samples is equally likely. And the major take-home message is that
we cannot vest too much confidence in a sample point estimate when SE is
large. A large SE implies instability in statistic estimates across repeated
sampling. So, the message is “Don’t fall in love with your point estimate,”
at least when SE is large.

Confidence intervals provide information about the point estimate
and the SE, and thus about the precision of the estimate. Wider CIs imply
less precise estimates.

Note that the Figure 7.1 CIs vary in width, even though all 25 sample
sizes were n = 15, and all the intervals were constructed at the 95% confi-
dence level. This is because the SDs differed across the 25 samples. If we
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had known that σ = 10.0, but somehow still did not know µ, we could
have drawn CIs to estimate µ, and at fixed n, fixed and known σ, and a
fixed confidence level, the CIs would have been identical in length. In
practice, when we are estimating µ, we rarely presume at the same time
that somehow we know σ.

In Figure 7.1, two of the 95% CIs for the M do not capture µ, which
in the present heuristic example is known to be 50.0. These are the 16th
and the 17th intervals in Figure 7.1. Of course, in real research, we will
never know that our sample CI does not capture a parameter. Indeed, the
estimated precision for the 16th CI is fairly narrow. For this sample result,
we might fall in love with our statistic M = ~43, especially given the rela-
tively narrow width of the 95% CI. But our love would be misplaced.

If we drew a huge or infinite number of random samples from the
population portrayed in Figure 7.1, and constructed 95% CIs for the
parameter estimate (e.g., M, SD, coefficient of kurtosis), exactly 95% of
the intervals would capture the true parameter, and exactly 5% of the
intervals would fail to capture the parameter. In other words, when we
construct a confidence interval, the confidence level statement applies, not
to a single interval, but to infinitely many intervals. As Thompson (in
press) emphasized, never forget that 1 ≠ ∞. In the words of Good and
Hardin (2003), “It is not true that the probability that a parameter is
included in a [single] 95% confidence interval is 95%” (p. 101).

Thus CIs cannot magically tell us what the parameter we are estimat-
ing is. Nevertheless, CIs communicate both the point estimate, and infor-
mation about the precision of the estimate. And CIs have the wonderful
feature that sets of CIs for a literature can readily be presented in a single
picture. As has been intimated elsewhere (Wilkinson & APA Task Force,
1999), a picture may be worth a thousand p values. Such graphics can be
easily constructed with the Excel CHART WIZARD and by inputting CI lower
and upper bounds, as well as the point estimates from a series of studies,
as STOCK wizard option low, high, and close values.

Modern software painlessly computes CIs for various statistics, or
provides the relevant SEs. Some very good books that flesh out related
concepts have been provided by Altman, Machin, Bryant, and Gardner
(2000) and Smithson (2000, 2002). The recent article by Cumming and
Finch (2005) provided useful, practical suggestions. As Good and Hardin
(2003) explained,

206 FOUNDATIONS OF BEHAVIORAL STATISTICS



Point estimates are seldom satisfactory in and of themselves. First, if the
observations are continuous, the probability is zero [actually infinitesimally
small] that a point estimate will be correct and equal the estimated parame-
ter. Second, we still require some estimate of the precision of the point esti-
mate. (p. 45)

��� Confidence Intervals for Effect Sizes

If effect sizes are essential, and confidence intervals are “the best” report-
ing strategy, then the marriage of CIs and effect sizes seems appealing.
However, some technical difficulties confront this proposal.

Formulas are available for computing (a) the commonly-used statistics
discussed in this book, (b) standard errors for these statistics, and (c) con-
fidence intervals for these statistics. But a formula cannot be used to com-
pute the CI for an effect size.

The problem with computing a confidence interval for an effect size is
that, unlike CIs for statistics, even for a fixed n the widths of the CIs for
an effect size are different for different values of the effect. In essence, a
different formula for computing an effect CI has to be used for each of the
infinitely many values of the effect size (see Cumming & Finch, 2001).

Nevertheless, CIs for effect sizes may still be computed, but the pro-
cess does not involve execution of a formula. Instead, a computer-
intensive statistical process called iteration must be used. As convention-
ally performed, iteration involves a process of initially guessing a solution,
and then repetitively tweaking the guess until some statistical criterion is
reached.

Here the logic of iterative estimate of the CI for an effect size is briefly
described. For more detail, the reader is referred to Cumming and Finch
(2001) and the excellent book by Kline (2004).

In the case of a two-tailed CI, there is a sampling or a test distribution
that is associated with each end of the interval. When we construct an
interval at a given confidence level, 1 – α, for the test statistic distribution
for the left side of the CI, we want α / 2% (e.g., 5% / 2 = 2.5%) of area in
the test statistic distribution to be to the right of the point estimate (e.g.,
the computed M, the computed d). Conversely, for the test statistic distri-
bution for the right side of the CI, we want α / 2% (e.g., 5% / 2 = 2.5%)
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of area in the test statistic distribution to be to the left of the point esti-
mate (e.g., the computed M, the computed d).

For CIs for statistics, this outcome can be easily accomplished by
invoking the appropriate computational formula, because only one test
statistic distribution, one assuming the nil null is true, is always used to
identify both endpoints of the confidence interval. But because there are
infinitely many possible test statistic distributions for effect sizes, which
vary in shape for each different effect size, CIs for effect sizes must be
iteratively estimated.

The test statistic distributions used in estimating CIs (and also for
computing power or β) for nonzero effect sizes are noncentral distribu-
tions. These are not the central test statistic distributions discussed in
Chapter 6, which assume a zero effect size, which is the required assump-
tion when testing nil null hypotheses. When people say “test statistic,”
they are talking about the central test statistics discussed in Chapter 6,
unless they explicitly say “noncentral.”

To compute a CI for an effect size, an initial guess is made about the
appropriate noncentral test statistic (see Cumming & Finch, 2001, or
Smithson, 2001) for the left arm of the CI. Then the computer tweaks the
selection of the test statistic distribution, associated with different nonzero
effect sizes, until α / 2 of the area in the rightmost part of the distribution is
just to the right of the calculated effect. Then the same process is followed in-
dependently for the rightmost arm of the effect size CI, or vice versa.

Various computer programs are readily available for iteratively, pain-
lessly estimating the CIs for effect sizes. Some run stand-alone (Steiger &
Fouladi, 1992), or under SPSS or SAS (Algina & Keselman, 2003; Algina,
Keselman, & Penfield, 2005; Smithson, 2001), or Excel (Cumming &
Finch, 2001).

Table 7.2 presents a hypothetical literature consisting of 10 studies,
and the related Cohen’s d and pCALCULATED values. Nine of the 10 original
studies and the new 11th study were created to honor Rosnow and
Rosenthal’s (1989b) view that “surely, God loves the .06 [level of statisti-
cal significance] nearly as much as the .05” (p. 1277).

In a literature prejudiced against statistically nonsignificant results,
the first study with an anomalous negative effect size (d = –0.50;
pCALCULATED = 0.043) will be afforded priority for publication. The remain-
ing studies with positive values for d, but p is approximately 0.06, may
never see the light of the publication day.
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These dynamics are troubling. If 1,000 researchers all drew random
samples from a population exactly described by the nil null, and in each of
the 1,000 independent studies α = 0.05, exactly 50 studies should obtain
statistically significant results. These Type I errors will be afforded publi-
cation priority. But subsequently, any researchers replicating the 50 pub-
lished studies, each involving Type I errors, will have difficulty publishing
their failures to replicate statistical significance. In this manner the self-
correcting features of science may be compromised by the bias against sta-
tistically nonsignificant results. Greenwald (1975, pp. 13–15) cited real-
world examples of these dynamics.

Figure 7.2 graphically presents the CIs for the Cohen’s d values from
the 11 studies. The figure also portrays the weighted (by n) averages for
effects across the studies, and the related CIs. (In real meta-analytic inte-
grations of effect sizes, more sophisticated forms of weighted averages are
actually used.)

The figure illustrates how a literature can be summarized in a picture.
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TABLE 7.2. Integration of d across 11 Hypothetical Studies

Study d n tCALCULATED pCALCULATED

Previous research

1 –0.50 19 –2.18 0.043
2 0.25 60 1.94 0.058
3 0.50 17 2.06 0.056
4 1.00 6 2.45 0.058
5 0.75 9 2.25 0.055
6 0.30 43 1.97 0.056
7 0.85 7 2.25 0.066
8 0.20 90 1.90 0.061
9 0.57 13 2.06 0.062

10 0.45 19 1.96 0.065

Pooled weighted (by n) average

0.281 283 4.73 <.001

Current study

11 0.28 45 1.88 0.067

Revised weighted average

0.281 328 5.09 <.001



Even a relatively large literature could be summarized economically. Pic-
tures such as Figure 7.2 make clear the patterns of effects across related
studies. More importantly, such pictures also convey the precisions of
studies.

Pictures such as Figure 7.2 are too rarely seen today. Such pictures
might lead to disturbing conclusions about the precisions of various litera-
tures on which we depend for evidence-based practices (Odom,
Brantlinger, Gersten, Horner, & Thompson, 2005).

Some Key Concepts

Effect sizes should not be interpreted using fixed benchmarks or
ignoring the context of the study. Instead, effects should be inter-
preted by invoking personal value judgments informed by “meta-
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analytic thinking” and the direct, explicit comparison of effects across
related studies (Thompson, 2002b, in press). Effect sizes must be
interpreted considering the study’s context. Small effects for critically
important outcomes, given evidence of replicability, may nevertheless
be quite noteworthy (Breaugh, 2003).

Confidence intervals have great power to support the explication
of the story that data have to tell. Intervals inform judgment about the
precision of point estimates. And experience in using CIs will also
teach you the very powerful lesson that “apparently inconsistent
results in the literature may be revealed later by the use of a confi-
dence interval for each study to be more consistent than traditional
analyses originally seemed to indicate” (Grissom & Kim, 2005, p.
24).

��� Reflection Problems ���

1. The r2* / R2* correction can be used either retrospectively or prospec-

tively. Retrospectively, once we complete a study, we know all three ele-

ments of the correction with certainty, including the actual r2 / R2. We

can then adjust our final effect size using these elements.

Prospectively, before we conduct our study, but once we know our

intended sample size and number of predictor variables, a useful exercise

is to compute the expected sample r2 / R2 under an assumption that the

population parameter r2 / R2 is zero. The expected sample r2 / R2 is not

zero. Program the following spreadsheet.
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The output for r2 = 90.0%, n = 10, and one predictor variable will yield

these results.

Under an assumption that the population parameter r2 is zero, solve for

r2* = 0 by varying the input values of r2 and declaring use of only a single

predictor variable for the bivariate problem. The final r2 isolated in this

manner for a given design is the expected sample r2 for the design under

our assumption, and will not be zero, notwithstanding our assumption.

Find the expected sample r2 for (a) n = 15, (b) n = 50, and (c) n = 500,

under an assumption that the population value is zero.

2. Of course, the standardized difference effect sizes are biased by sampling

error, just as other effect sizes are impacted by these same dynamics.

Thus, Hedges (1981; Hedges & Olkin, 1985) proposed a correction factor

for Glass’ ∆. The “adjusted ∆“ can be computed by multiplying the origi-

nal value by the correction factor:

1 – (3/((4 * (nC – 1))–1))

where nC is the sample size in the control group. For example, for nC =

10, the correction factor is the multiplicative constant of 0.91428. Use a

spreadsheet to compute the correction factor for nC = 5, 10, 20, 30, and

40. What does the result suggest about the bias of ∆?

3. Classical effect sizes are “on the average.” Grissom (1994; Grissom &

Kim, 2005) proposed the intriguing alternative idea of a probability of

superiority (PS) effect size that is not on the average, and is computed by
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making all possible pairwise comparisons of scores across the treatment

and control groups to evaluate which treatment is likely to help the

greater number of people. With no or few ties, this computation can be

vastly expedited by invoking the Mann–Whitney U in SPSS, and then

dividing U by nTREATMENT(nCONTROL).

Consider the following data.

Case DV GRP

1 1 0

2 3 0

3 5 0

4 7 0

5 2 1

6 4 1

7 6 1

8 8 1

For these data, 2 > 1; 4 > 1, 4 > 3; 6 > 1, 6 > 3, 6 > 5; and 8 > 1, 8 > 3,

8 > 5, 8 > 7, for a total of 10 occasions in which group 1 scores are larger

than group 0 scores. There are 4 × 4 = 16 score comparisons, so PS10 =

10 / (4)(4) = 0.625. SPSS returns a value of 6.0 for the Mann–Whitney U.

Dividing U by nTREATMENT × (nCONTROL) yields 6.0 / (4)(4) = 0.375. This is the

proportion of scores in the group with overall lower scores (i.e., group 0),

so PS10 = 1 – 0.375 = 0.625. Confirm these or similar analyses using SPSS.
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8

Multiple
Regression Analysis

Basic GLM Concepts

T
he initial chapters in this book considered situations in which you
wish to characterize features of a single variable. Univariate statis-
tics characterize features of a single variable as regards (a) location,
(b) dispersion, or (c) shape.

Of course, quantitative science focuses on relationships that recur
under stated conditions. So real science at a minimum requires the mea-
surement of at least two variables, sometimes conceptualized as a depen-
dent (or criterion or outcome) variable, and at least one independent (or
predictor) variable. And in science, the analytic focus is directed specifi-
cally at the relationship between these two variables. The bivariate statis-
tics that can be used to quantify these relationships include the Pearson
product–moment r (or alternatively r2), Spearman’s ρ (or alternatively
Spearman’s ρ2), and the φ coefficient (or alternatively φ2).

However, a fundamental premise of statistics is that each researcher
presumes some (conceivably implicit) model of reality. Furthermore, every
statistical analysis tests the fit of a model to data. Consequently, a critical
imperative of social science research is that we ought to insure the fit of
our analytic model with our model of reality. Otherwise we are using our
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analyses to investigate something other than the reality that we believe
exists, which is not sensible!

Our model of reality may posit that the outcome variables of interest
to us are multiply caused, or require multiple predictors to attain reason-
able predictive accuracy. Given this model of reality, we may well use
univariate statistics, or even bivariate statistics, to understand and describe
our variables. But the primary analysis used to address our main research
questions usually must be able to accommodate multiple predictor vari-
ables (and, indeed, sometimes multiple criterion variables).

Multiple regression analysis is a statistical technique that can be used
to investigate relationships between a single outcome variable and two or
more predictor variables. Multiple regression is a univariate statistical
analysis in the second meaning of the word “univariate” (i.e., analyses
involving only one outcome variable). Regression is one of many analyses
that can be conducted when only one outcome variable is of interest.

Multiple regression analysis is often of practical value because the
analysis can yield important insights into data dynamics. But regression is
just as important from a heuristic point of view, because regression is the
univariate case of the parametric general linear model (GLM). That is,
regression (but not vice versa) can be used to conduct the commonly-used
univariate statistical analyses.

As Cohen (1968) argued in a seminal article years ago, scholars who
understand regression understand how the various univariate methods are
part of a single general linear model, what all univariate statistical analy-
ses have in common, and what features differentiate the analyses. All sta-
tistical analyses (a) are correlational, (b) either explicitly or implicitly
compute weights that are applied to measured (or observed) variables to
estimate scores on latent variables (also called synthetic or composite vari-
ables), and (c) yield variance-accounted-for effect sizes analogous to r2.

Indeed, there is a broader version of the univariate GLM. Multivariate
analyses (e.g., MANOVA, descriptive discriminant analysis, canonical
correlation analysis) simultaneously consider two or more outcome vari-
ables and one or more predictor variables. Knapp (1978) and others (e.g.,
Thompson, 1991a, 2000a) have explained that canonical correlation anal-
ysis is the multivariate general linear model. And there is an even larger
GLM umbrella called structural equation modeling (SEM; Bagozzi,
Fornell, & Larcker, 1981).
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The existence of the multivariate GLM is noteworthy here, because
once someone has truly mastered interpretation of results for the regres-
sion case, one has all the requisite skills for interpreting multivariate
results. Mastering univariate GLM concepts is like being in Oz with ruby
slippers. You can easily branch out to Kansas or multivariate statistics
whenever a good witch (or nice scholar) explains that you now have pow-
ers beyond those that may at first glance be obvious.

��� Purposes of Regression

Regression can be used for two purposes: prediction and explanation (i.e.,
theory testing). Of course, these purposes are not mutually exclusive.
When in real life we do prediction, even when the prediction is very accu-
rate, we probably would feel more comfortable if we understood why the
prediction worked so well. Conversely, when we test theory, although our
initial purpose may be basic science (i.e., knowledge for its own sake), we
do usually presume that our insight will ultimately have some practical use
of some sort. However, in both cases (and throughout the general linear
model), the dependent variable is the focus of all analyses.

Focal Role of Dependent Variables

In science, dependent variables are the foci of our thinking, and of all anal-
yses. Scientists identify dependent variables that are important to them, or
to society. After making the necessary value judgment that given outcomes
are important, only then will independent variables be selected. We use
theory, or previous research, or both to inform the selection of those inde-
pendent variables that we believe causally control, or predict, or explain
the dependent variables upon which we have decided to direct our atten-
tion.

Scholars are systematic in the selection of these independent variables.
True, very important insights can be discovered through happenstance.
For example, Fleming discovered penicillin when some mold apparently
came in through an open basement window, landed on some Petri dishes,
and killed some of the bacteria growing there. The happenstance was par-
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ticularly fortuitous because this happened just before World War II, when
penicillin was especially needed in treating very large numbers of wound-
related infections. But real science is more than the capitalization on fortu-
itous discoveries.

By the same token, in science we do not typically select possible causal
variables and then ask what outcomes these variables might produce. We
do not usually mix chemicals in various random ways in the hope that
something important may eventually occur. Instead, we presume that the
most productive progress in generating knowledge occurs when we first
select outcomes that we value, and then systematically identify promising
potential predictor variables.

Prediction

Prediction of important outcomes can be valuable, even when we have no
understanding as to why the prediction works. For example, long ago in
England smallpox epidemics were killing large proportions of the popu-
lace. Jenner discovered that milkmaids died infrequently from smallpox,
and subsequently realized that cows get a disease like smallpox in appear-
ance, but that is rarely fatal. Jenner reasoned that the milkmaids also got
smallpox from their cows, which somehow inoculated the milkmaids
against subsequent smallpox infection. His informal experiment, in which
he applied cowpox puss only to selected friends, yielded the confirmation
of a causal mechanism, although his social circle was somewhat more con-
stricted following his research!

In predictive applications of regression, the existence of two groups of
participants is always implied. We have an outcome that we want to pre-
dict in our second group of participants (e.g., the grade point averages of
doctoral students upon their graduation) that has not yet occurred. Per-
haps we wish to use these predicted outcome scores of the applicants to
make admission decisions.

We also have our first group of participants. For these participants
(e.g., doctoral students who graduated at the university during the previ-
ous 3 years), we know the scores on the outcome variable of interest. We
also have available for this group scores on a range of predictor variables
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that might predict graduate grade averages. We conduct the regression
analysis within group 1.

Iff the prediction works reasonably well in group 1, we then may con-
sider using the same predictor variables in group 2. We also will apply the
weights generated in group 1 to the predictor variable scores in group 2.
The role of these weights is to optimize the accuracy of the prediction.

This use of group 1’s weights with group 2’s predictor variables turns
on the fundamentally important assumption that the two groups of stu-
dents are reasonably similar. This assumption might not be tenable, for
example, if the two student groups were measured at disparate times, or at
two very different universities, or if the academic majors of the two groups
were very different.

Explanation

Sometimes basic science is conducted simply for the joy of knowing, with-
out any expectation of an immediate application of the new knowledge.
For example, when we practice science to discover the age of the universe,
or its origins, we have little expectation of some immediate use for our
new insights.

Kerlinger (1977) argued that sometimes theories deemed potentially
useless at their origination prove in the long term to have greater applica-
tion than even the findings from some applied or predictive research, and
“science, then, really has no other purpose than theory” (p. 5). For exam-
ple, in the 1930s, three scientists working at Bell Laboratories—funded by
the then monopoly of the national telephone system—passed an electrical
current through a silicone crystal structure and observed a change in fea-
tures of the current. They did not envision the hugely important applica-
tions of their discovery in the form of transistors and, later, computer
chips. Similarly, in 1905, when Einstein published a series of papers pre-
senting his relativity theory, that objects moving faster experience time
more slowly, and his theory that energy and matter are interchangeable,
he did not envision that only a few decades later he would type a letter to
Franklin Roosevelt to inform the President of the potential use of theory
to guide the creation of an atomic bomb.
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��� Simple Linear Prediction

Ultimately, we will consider three multiple regression situations: (a)
uncorrelated predictor variables, (b) correlated predictor variables, and (c)
correlated predictor variables involving suppression effects. However, first
we will spend considerable time elaborating simple regression (i.e., regres-
sion involving only a single predictor variable). Although not true multiple
regression, this simple situation will facilitate laying the groundwork for
consideration of the more complicated (and realistic cases) involving two
or more predictor variables.

It might be noted that the situation involving a single predictor is a
special case (i.e., a subset) of situation #1, because when only a single pre-
dictor is involved, there is no correlation between variables within the pre-
dictor variable set. Thus, many of the conclusions about simple linear
regression, involving a single predictor, will generalize to the multiple
regression situation involving multiple predictor variables that are per-
fectly uncorrelated with each other.

Table 8.1 presents the hypothetical data for 20 participants that will
be employed to make this discussion more concrete. The interested reader
can readily reproduce or further explore the results presented in this chap-
ter for these data by analyzing the data using SPSS or another statistical
package.

Form of the Regression Equation

As an example of simple linear regression, one might wish to predict the
height of adults (Yi) using information about their heights at 2 years of age
(Xi). Or, alternatively, we might wish to predict the height of adults (Yi)
using information about the participants’ IQ scores measured at age 6
(Xi).

Regression analysis employs two types of weights: an additive con-
stant, a, applied to every individual ith participant, and a multiplicative
constant, b, applied to the predictor variable for each individual ith partic-
ipant. We do not use i subscripts for these constants, because their values
do not change across individual participants. Thus, the weighting system
takes the form of a regression equation:

Yi <—— �Y i = a + b (Xi)
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The regression equation is the set of weights generated in a given analysis.
Just to keep people on their toes by creating potential confusion, the b

weights are also sometimes synonymously referred to as unstandardized
regression weights. This label is especially confusing, because a constant
cannot be standardized. The intent presumably is to refer to “weights
applied to measured variables in their unstandardized form.”

For example, it is known that the following system of weights works
reasonably well in predicting height at age 21 from height at age 2:

Yi <—— �Y i = 0.0 + 2.0 (Xi)

Thus, an individual such as Kelly, who is XKELLY = 27″ tall at age 2, is pre-
dicted to have a height of �YKELLY = 54″ (0.0 + 2.0 × 27 = 0.0 + 54.0 = 54.0)
at age 21.
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TABLE 8.1. Heuristic Data for Three Regression Situations

Predictor variables

ID/statistic Y X1 X2 X3 X4 X5 X6 X7

1 49.553 48.473 51.610 49.338 49.162 49.718 49.488 50.240
2 50.094 48.812 50.537 51.545 50.576 49.640 49.925 51.286
3 50.799 49.152 49.732 49.890 50.386 49.662 49.889 50.641
4 50.778 49.491 49.195 48.786 49.646 50.297 51.399 51.116
5 50.296 49.830 48.927 49.338 50.579 49.924 49.732 49.904
6 51.420 50.170 48.927 50.662 50.598 50.704 50.303 50.223
7 49.582 50.509 49.195 51.214 48.595 49.350 48.549 49.095
8 50.345 50.848 49.732 50.110 49.087 51.979 49.566 48.004
9 49.988 51.188 50.537 48.455 50.386 48.923 49.148 51.652

10 50.860 51.527 51.610 50.662 50.806 50.068 49.481 49.781
11 49.753 50.170 48.927 50.662 49.768 51.384 49.325 48.400
12 50.491 50.509 49.195 51.214 51.681 49.026 50.357 49.841
13 48.415 50.848 49.732 50.110 48.873 49.657 50.294 49.378
14 49.474 51.188 50.537 48.455 51.746 48.945 51.679 50.997
15 49.506 51.527 51.610 50.662 49.755 50.467 50.510 50.224
16 47.166 48.473 51.610 49.338 48.393 49.058 47.365 49.210
17 50.480 48.812 50.537 51.545 50.857 48.217 50.556 51.488
18 51.158 49.152 49.732 49.890 50.760 50.537 50.344 49.275
19 49.067 49.491 49.195 48.786 49.834 50.541 51.022 50.030
20 50.778 49.830 48.927 49.338 48.512 51.904 51.070 49.216

M 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000
SD 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000



We can also compute a fourth score in regression. If Kelly’s actual
height at age 21 is YKELLY = 60″, we can compute an “error” score as the
deviation between Kelly’s actual height (i.e., YKELLY = 60″) and Kelly’s pre-
dicted height (i.e., �YKELLY = 54″). Because ei = Yi – �Y i, for Kelly we have
eKELLY = 6 (i.e., 60 – 54). Any individual whose actual Yi score is perfectly
predicted has ei = 0.0, and iff all participants’ Yi scores are perfectly pre-
dicted, all the ei scores will be zero.

The regression problem can also be conceptualized using a scattergram
plot. The line of best fit to the data points is the graphical representation of
the regression equation (i.e., the regression line actually is the regression
equation, and vice versa). The a weight is the point on the vertical Y axis at
which the regression line crosses the Y axis when X is 0; this is called the
intercept. The b weight is the slope (i.e., change in rise/change in run) of the
regression line (e.g., the line changes in b units of Y for every change of
1 unit of X, 2 times b units of Y for every 2 units of change in X, etc.).

Two Types of Variables

A foundational concept in statistics is the fact that all analyses involve at
least two each of two kinds of variables: measured and latent. In the pres-
ent example, both height at age 2 and height at age 21 are measured (or
observed) variables. These are directly measured, without invoking any
weights. But the �Y i and the ei scores are latent (or synthetic or composite)
variables.

In actuality, the latent variables are the focus of statistical analysis.
These are the variables that represent estimated scores on unobservable
theoretical constructs. And the latent variable �Y i (a) encapsulates all the
useful predictive variability in the predictors and (b) discards all the use-
less (nonpredictive) variability in all the predictors. For this reason, the r
of Yi with �Y i always equals the r of Yi with Xi (and the r2 of Yi with �Y i

always equals the r2 of Yi with Xi).

Function of the Weights

The function of the weights is to make the Yi and the �Y i scores of a given
ith individual match as closely as possible, given the predictive power of a
given Xi. We can think of a range of possibilities, running from perfect
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prediction (i.e., every Yi = �Y i for each ith individual, and every ei = 0.0) to
prediction involving a useless predictor.

Let’s consider the worst-case scenario first, and then compare these
dynamics to those occurring in a best-case scenario. Of course, in actual
research we invariably find ourselves somewhere along this continuum of
outcomes, rather than at one of the two conceptual extremes.

Worst Case

In a worst-case scenario, we have access only to useless predictors. For
example, let’s assume we are predicting the height of adults (Yi) using
information about their IQ scores measured at age 6 (Xi), and the predic-
tive information is completely useless.

In a best-case scenario, every Yi = �Y i for each ith individual, and every
ei = 0.0. In the best-case scenario, because every Yi = �Y i, every statistic (e.g.,
M, Mdn, SOS, SD, coefficient of skewness) computed for Y exactly equals
the corresponding statistic (e.g., M, Mdn, SOS, SD, coefficient of skew-
ness) computed for �Y i, because in fact in this extreme scenario the two
variables have exactly the same data.

But even in a worst-case scenario, we use our weights to optimize the
fit of �Y i to Yi. What, if anything, can our weights accomplish in the unfa-
vorable situation of a worst-case prediction?

In a worst-case scenario, we will want to obliterate our useless predic-
tor variable. Use of a b weight of zero will accomplish this objective quite
nicely. When b = 0.0, Xi can have no impact on the estimation of Yi, as
quite rightly should be the case. Multiplication by 0.0 kills, and so multi-
plication of Xi by b = 0.0 kills the useless predictor.

So now the job of optimizing the fit of �Y i to Yi falls solely to the a
weight. Our expectation is not that the weights always do a perfect job of
optimizing fit. Instead, our expectation is that the weights must optimize
the fit �Y i to Yi within the limits of our data.

We may not be able to do a very good job of optimizing this fit within
a worst-case scenario, but what is the best we can do? Remember from
Chapter 2 that the mean has the property that the sum of the deviation
scores from M is always zero. The implication is that in a worst-case pre-
dictive scenario the best (not good, just best) prediction we can accomplish
is to set every �Y i to equal MY.
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In a worst-case scenario, because b = 0.0, we can set every �Y i equal to
MY by setting a = MY. Doing so will optimize the fit of �Y i to Yi, because the
ei scores will be minimized, just as M minimizes the sum of the deviation
scores.

In a worst-case scenario, Yi, Xi, and ei will be variables (two measured,
one latent), but the �Y i will be a constant (each equaling MY). There will be
only three variables, not four.

Notice that even in a worst-case scenario the mean of the �Y i scores will
equal MY. Of course, at the other extreme of best case, perfect prediction,
the mean of the �Y i scores would also equal MY because these two variables
would involve identical data. The implication is that the a and b weights
can make the means of the Yi and the �Y i scores equal throughout every sit-
uation, ranging from worst-case to best-case scenario.

Ideally, we would also like the dispersion of the Yi and the �Y i scores to
be equal. However, in the worst-case scenario, the �Y i scores have their
minimum possible dispersion—such that range, SOS, variance, and SD all
equal zero—because the �Y i scores in a worst-case scenario are all equal to
MY, and define a constant.

Best Case

In the best-case scenario, every Yi = �Y i for each ith individual, and every
ei = 0.0. So, in the best-case scenario, Yi, Xi, and �Y i are variables (two mea-
sured and one latent), but the ei scores are a constant. In all other situa-
tions, regression involves at least two measured variables and exactly two
latent variables.

Of course, in the best-case scenario, as in every possible scenario, the
mean of the �Y i scores equals MY. But in the best-case scenario, because the
data for the Yi and the �Y i scores are identical, the SOSs of the Yi and the �Y i

scores are also now equal. And because the ns for the two variables are
equal, the variances and the SDs of the Yi and the �Y i scores are also equal.

Indeed, the dispersion of the �Y i scores can never exceed the dispersion
of the Yi scores. If the SOSY scores equals 22.2, even before conducting
any analyses, we know that the dispersion of the �Y i scores cannot be less
than zero (ever) and that for our data the SOS of the �Y i scores cannot
exceed 22.2 (and will only equal 22.2 in a best-case scenario).
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Of course, as we learned in the Reflection Problems for Chapters 2
and 3, additive weights applied to variables do not affect dispersion. But
multiplicative weights affect both the dispersion of variables (unless the
multiplicative constants are –1 or 1) and the location of variables (unless
the original mean is zero or the multiplicative constant is 1). Thus, in a
best-case scenario, the function of the b weight is to make the dispersions
of the Yi and the �Y i scores equal, while the a and the b weights together
make the means of the Yi and the �Y i scores equal.

Computation of the Regression Weights

The previously described form of the regression equation presumed that
we were working in the unstandardized score world. An alternative form
of the prediction equation involves first converting both variables into
z-score form (i.e., scores transformed to have a mean of 0.0 and an SD of
1.0 via the algorithm zi = (Xi – MX) / SDX) and working instead in the stan-
dardized score world.

When all the variables are in z-score form, the a weight is still present,
but is always zero. Therefore, the regression equation for standardized
measured variables simplifies to the form

ZY <—— �Y = +β(ZX)

Note that the multiplicative weight for this situation is always distin-
guished from the multiplicative weight for the nonstandardized scores by
referring to the weights for z scores as β weights (versus b weights).

Just to be confusing, the β weights are also sometimes labeled stan-
dardized regression weights. Unfortunately, this label is an oxymoron,
because a constant cannot be standardized. What is intended is a reference
to “weights applied to measured variables in their standardized forms.”

Note that the a, b, and β weights are all in the score world, which is
necessary for them to be applicable to the scores also located in this world.
However, a and b are in the unstandardized score world, whereas the β
weights are in the standardized score world.

It happens that for a two-variable regression problem, the β weight to
predict zY with zX is the bivariate correlation coefficient between the two
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variables (of course, so is the β weight to predict zX with zY, because rYX =
rXY).

The b and β weights can readily be transformed back and forth into
each other with the equation

b = β(SDY / SDX) (8.1)

or

β = b(SDX / SDY) (8.2)

As the equations imply, b and β will be equal when (a) either is zero or (b)
the two variables’ standard deviations are equal. Of course, the equations
also imply that b and β always have the same signs, because the SDs can-
not be negative and so cannot influence the signs of the weights. And
when two measured variables are uncorrelated, rXY = b = β = 0.

In essence, as suggested by Equation 8.1, the b weight is computed to
remove the standard deviation of X from �Y via division, and attempts to
insert the SDY via multiplication. We do this because we care only about
the dependent variable. Any value for a predictor variable is derivative
solely from the predictor’s ability to predict or explain Y.

Table 8.2 presents the bivariate correlation matrix associated with the
Table 8.1 heuristic data. Given these results, the equation for predicting zY

with zX would be

zY <—— �Y i = +0.0878(zX)

As noted in Chapter 5, it happens that regression lines (and the related
planes or hyperplanes when there are three or four or more measured vari-
ables) always pass through the means of all the measured variables.
Because the means of both Y and X1 for the Table 8.1 data are 50, the
regression line pivots on the Cartesian coordinate where MY = 50.0 and
MX1 = 50.0. Furthermore, because for these data both SDY and SDX are
equal, as reported in Table 8.1, for these data the b multiplicative weight
also equals β = +0.0878.

And given the form of the prediction equation, �Y i = a + b(Xi)—because
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when Xi = MX, then �Y i = MY (merely another way of saying the regression
line pivots on the Cartesian coordinate of the two means)—we can solve
for a as

a = �Y i – b(Xi) (8.3)

or, equivalently, for the mean value of X, as

a = MY – b(MX) (8.4)

Thus, here a equals

45.61 = 50.0 – 0.0878(50.0)

For these two variables in their standard score form, involving means
of zero for both variables, and because here β = b = +0.0878, the a weight
for the standardized variables would be

0 = 0.00 – 0.0878(0.00)

Indeed, for standardized variables, the a weight is always zero, as correctly
suggested by this equation.

These various dynamics are illustrated in the Figure 8.1 plot of the
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TABLE 8.2. Bivariate Correlation Matrix

Predictor variables

Variable Y X1 X2 X3 X4 X5 X6 X7

Y 1.0000
X1 0.0878 1.0000
X2 –0.3795 0.0000 1.0000
X3 0.2170 0.0000 0.0000 1.0000
X4 0.4819 0.1757 –0.0053 0.1247 1.0000
X5 0.2903 0.1426 –0.3929 –0.0795 –0.3758 1.0000
X6 0.4392 0.1525 –0.3123 –0.1864 0.4213 0.1671 1.0000
X7 0.1740 –0.1400 0.2691 –0.1437 0.5089 –0.6302 0.3542 1.0000



data and the regression line that best fits the data. Note that the regression
line is relatively flat, because the correlation coefficient (and b and β, for
these data) is nearly zero.

Table 8.3 presents related concepts from the perspective of the indi-
vidual scores of the 20 participants. Because we select the regression equa-
tion to yield the best possible prediction of Y for the group as a whole, on
the average, then it is no surprise that the mean e score is always zero. This
is part of an operational definition of a “best-fit” position for the regres-
sion line.

The sum of squares of the �Y scores (0.147, i.e., the explained disper-
sion or variability in Y) plus the sum of squares of the e scores (18.857,
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FIGURE 8.1. Y predicted with X1.
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i.e., the unexplained variability in Y) exactly (within rounding error)
equals the sum of squares total (SOSY = 19.000). We can even look at the
e scores to find the person who most deviates from the regression line (per-
son #16). In Figure 8.1, the e scores are the distance, always in vertical
units of Y (because Y is what we care about; the focus of the entire analy-
sis is on Y units), of a given �Y i score from the regression line.

The sum of squares explained divided by the sum of squares of Y tells
us the proportion of the variability of individual differences in Y that we
can explain with the predictors. Therefore, for the simple linear regression
situation,

r2
YX = SOSŶ / SOSY (8.5)

We are dividing an area-world statistic by another area-world statistic,
thereby obtaining an area-world result.

In the multiple regression case, we can compute the squared multiple
correlation coefficient in a corresponding manner, using the equation

R2 = SOSŶ / SOSY (8.6)

Conversely, given the r2
YX (or the R2), we can compute the SOS of the �Y

scores, called the SOSEXPLAINED (or, synonymously, the SOSMODEL,
SOSREGRESSION, or SOSBETWEEN), using the formula

SOSEXPLAINED = r2
YX(SOSY) (8.7)

for the simple linear regression situation, or

SOSEXPLAINED = R2 (SOSY) (8.8)

for the multiple regression situation.
Table 8.4 makes these and some other important points. As expected,

the r of Y with X1 equals the r of Y and �Y, because �Y is all the useful parts
of any and all the predictors with all the useless parts of the predictors
deleted.

It is also noteworthy that predictors and ei scores always have r (and r2)
equal to zero. This only makes sense, because the error variability is the
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variability in the Y scores that the predictors cannot explain. Finally, the
fact that the explained and the unexplained variability in the Y scores are
both conceptually discrete directly suggests the truism that the r (and r2) of
the �Y i and the ei score also always equals zero.

Required Assumptions

All statistical models provide accurate estimates only when model assump-
tions are met. Thus, to the extent that assumptions are imperfectly met,
estimates of statistics such as r2, R2, the weights, and pCALCULATED will be
somewhat compromised. Of course, we can never perfectly meet the
assumptions of statistical methods, but we should at least do so approxi-
mately, and when interpreting our results, we must bear in mind the
degree to which assumptions are met. If we deem that assumptions are not
met to an acceptable degree, alternative analyses that make fewer or
weaker assumptions must be considered.

Here are the primary statistical assumptions of regression:

1. Scale. The dependent variable is at least interval, and the indepen-
dent variables are either dichotomous or at least intervally-scaled.

2. Model specification. We are using (a) the correct predictor vari-
ables, and (b) only the correct predictor variables, and (c) the form
of relationships (e.g., only linear relationships are considered,
curvilinear relationships are modeled) being modeled is correct.
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TABLE 8.4. Correlation Coefficients
among Two Observed and Two Synthetic Variables

SPSS Variable Names

Variable Y �Y e X1

Y 1.0000 0.0878 0.9961 0.0878
�Y 0.0878 1.0000 0.0000 1.0000
e 0.9961 0.0000 1.0000 0.0000
X1 0.0878 1.0000 0.0000 1.0000

Note. rY × X = r of Y with �Y. rS, the structure coefficient, = r of X1 with �Y. r of e with �Y always
= 0. r of e with X1 always = 0.



3. Error scores. The ei scores are normally distributed in the popula-
tion.

4. Homoscedasticity. In the population the ei scores have equal vari-
ances at different values of the predictor variables.

5. Predictors imperfectly correlated. No predictor is a perfect linear
combination of (i.e., is perfectly correlated with) any linear combi-
nation of the other predictor variables.

��� Case #1: Perfectly Uncorrelated Predictors

Regression analysis is also relatively straightforward in the situation of
multiple predictors that are perfectly uncorrelated. This sounds like an
improbable occurrence, but in practice it occurs quite frequently, as when
we employ as predictors certain kinds of scores from factor analysis
(Thompson, 2004) or when we perform certain analyses called balanced
ANOVA models, as we will see in subsequent chapters.

As noted previously, the use of a single predictor is a special case of
having multiple predictor variables that are uncorrelated with each other,
and many of the same dynamics occur for both situations. For example,
when there is a single predictor, or when multiple predictor variables are
perfectly uncorrelated with each other, the r of each predictor with the de-
pendent variable is that predictor’s individual β weight. This is illustrated
in the Table 8.5 results involving the prediction of Yi with perfectly
uncorrelated predictors X1i, X2i, and X3i.

Table 8.5 also presents the structure coefficient (rS) for each predictor
variable. A regression structure coefficient (Cooley & Lohnes, 1971, p. 55;
Thompson & Borrello, 1985; Thorndike, 1978) is the bivariate correlation
of a measured predictor with the latent �Y scores (not with the Y scores), and
is very useful in giving us a better understanding of the structure or the
nature of the synthetic variable. Understanding the structure or makeup of
the latent variable scores can be very important in understanding the predic-
tive utility of the predictor variables, as various researchers have emphasized
(cf. Courville & Thompson, 2001; Dunlap & Landis, 1998). As Thompson
and Borrello (1985) explained, a predictor can have a β weight of zero, but
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can actually be an exceptionally powerful predictor variable. One must
look at both β and structure coefficients when evaluating the importance of
a predictor, as we shall see in some detail in Chapter 9.

Table 8.6 makes clear that something else intriguing happens when
the predictors are perfectly uncorrelated: the sum of the r2s for the predic-
tors (each representing proportionately how much of the dependent vari-
able’s variability a predictor can explain) will equal the R2 involving all the
predictors because, in this situation, the predictors do not overlap at all
with each other. Thus, 0.0077 + 0.1440 + 0.0471 = the R2 of 19.88%.

We can see these dynamics mathematically within one of the many
formulas for computing the squared multiple correlation, which applies
across all regression cases, for any number of predictors 1 through j:

R2 = β1(rY × X1) + β2(rY × X2) + . . . + βj(rY × Xj) (8.9)

However, iff we are in Case #1, because each β weight equals the correla-
tion of a given predictor with Y, we can reexpress the equation as
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TABLE 8.5. Regression Results for Predicting Y with X1, X2, and X3;
X4, X5, and X6; or X4, X5, and X7

Statistics

Case predictors β r Partial r rS

Case #1
X1 0.0878 0.0878 0.0977 0.1970
X2 –0.3794 –0.3795 –0.3903 –0.8511
X3 0.2170 0.2170 0.2356 0.4866

Case #2
X4 0.6418 0.4819 0.5791 0.6844
X5 0.5177 0.2903 0.5287 0.4123
X6 0.0824 0.4392 0.0865 0.6238

Case #3
X4 0.5841 0.4819 0.5971 0.6517
X5 0.7169 0.2903 0.6359 0.3926
X7 0.3285 0.1740 0.3310 0.2354

Note. In Case #1, a given β = rY with X. In all cases, rS = rY with X / R.



R2 = rY × X1(rY × X1) + rY × X2(rY × X2) + . . . + rY × Xj(rY × Xj) (8.10)

or as

R2 = rY × X1
2 + rY × X2

2 + . . . + rY × Xj
2 (8.11)

��� Case #2: Correlated Predictors,
No Suppressor Effects

Collinearity (or multicollinearity) refers to the extent to which the predic-
tor variables have nonzero correlations with each other. Computations
become appreciably more complicated when the predictors are collinear.
The β weights for given predictors no longer equal the rs for the same pre-
dictors with the Yi scores, as reflected in Table 8.5. And as reported in
Table 8.6, the rs no longer sum to R2 (i.e., the sum, 0.5094, does not equal
the R2 of 49.575%). And notice how in Table 8.5 variable X6 has a near-
zero β weight (+0.082372) but an rS of +0.6238.

The challenge when we have correlated predictors is that we must not
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TABLE 8.6. Results Associated with
Table 8.1 Data and the Prediction

of Y with Variable Sets of Size k = 3

Predictor/sum rY with X r2
Y with X

X1 0.0878 0.0077
X2 –0.3795 0.1440
X3 0.2170 0.0471
Sum 0.1988

X4 0.4819 0.2322
X5 0.2903 0.0843
X6 0.4392 0.1929
Sum 0.5094

X4 0.4819 0.2322
X5 0.2903 0.0843
X7 0.1740 0.0303
Sum 0.3468



allow commonly explained variability in Yi to be multiply credited to two
or more predictor variables. We can allocate predictive credit for com-
monly explained portions of the Y variability however we wish (e.g., all to
X1, all to X2, or split in various ways between the predictors), but the
credit may be given only one time. Otherwise, we might obtain a squared
multiple correlation greater than 100%, which illogically would assert
that we can explain more variability in the Yi scores than the Yi scores
have.

For example, conceptually, if two predictors both had r2 with Y of
100%, and both predictors were given full credit for their predictive abil-
ity, we would obtain an erroneous estimate that R2 = 200%! Logically, we
require a computational formula for the β weights that (a) takes into con-
sideration all the r2 values among all the pairs of the measured variables,
and (b) allocates predictive credit to predictors such that explained por-
tions of the variability in the Yi scores are explained only once.

The number of rs that must be used to compute a single β weight can
grow quite large as predictors are added. For one predictor (i.e., two mea-
sured variables, one dependent, one predictor), there is only one r. For two
predictors (three measured variables), according to Equation 6.2,

CPW = [N (N – 1)] / 2 (6.2)

there are [3(3 – 1)] / 2 = three correlation coefficients that must be com-
puted. For three predictors (four measured variables), there are [4(4 – 1)] /
2 = six correlation coefficients that must be considered. For four predic-
tors, there are 10 correlation coefficients that must be considered, and for
five predictors there are 15 coefficients to consider.

To simplify the discussion of how beta weights are computed, we will
limit the discussion to an example involving two predictors. For two pre-
dictor variables, the two β weights for all cases can be computed using the
equations

β1 = [rY × X1 – {(rY × X2)(rX1 × X2)}] / [1 – rX1 × X2
2] (8.12)

and

β2 = [rY × X2 – {(rY × X1)(rX1 × X2)}] / [1 – rX1 × X2
2] (8.13)

8. Multiple Regression Analysis 235



Let’s say that rY × X1 = 0.707 and rY × X2 = 0.577. To be in Case #2, rX1 × X2

≠ 0, and we will specify rX1 × X2 = 0.800. So, based on Equation 8.12, we
have

[0.707 – {(0.577)(0.800)}] / [1 – 0.8002]
[0.707 – {(0.577)(0.800)}] / [1 – 0.640]

[0.707 – {(0.577)(0.800)}] / 0.360
[0.707 – 0.462] / 0.360

0.245 / 0.360
β1 = 0.682

and

[0.577 – {(0.707)(0.800)}] / [1 – 0.8002]
[0.577 – {(0.707)(0.800)}] / [1 – 0.640]

[0.577 – {(0.707)(0.800)}] / 0.360
[0.577 – 0.566] / 0.360

0.011 / 0.360
β2 = 0.032

And, based on Equation 8.9, the squared multiple correlation can be
computed as:

0.682(0.707) + 0.032(0.577)
0.482 + 0.018

R2 = 0.500

The score-world multiple R would equal 0.5000.5, or 0.707. One implica-
tion of these calculations is that R2, R, and the beta weights can be com-
puted given only the bivariate correlation matrix. Thus, reporting the
correlation matrix for related regression analyses is good practice. This
allows confirmation by readers of reported results, or the fitting of alter-
native regression models.

Note that iff we have perfectly uncorrelated predictors, Equation 8.12

β1 = [rY × X1 – {(rY × X2)(rX1 × X2)}] / [1 – rX1 × X2
2] (8.12)
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can be reexpressed as

β1 = [rY × X1 – {(rY × X2)(0.0)}] / [1 – 0.02] (8.14)

which simplifies to β1 = rY × X1, as noted previously. In parallel fashion, for
Case #1, β2 = rY × X2.

��� Case #3: Correlated Predictors,
Suppressor Effects Present

However, appreciably more complicated dynamics occur when suppressor
effects are present in the data. As defined by Pedhazur (1982), a possible
“suppressor variable is a [predictor] variable that has a zero, or close to
zero, correlation with the criterion but is correlated with one or more than
one of the predictor variables” (p. 104). Suppressors improve prediction
indirectly by making other predictors better, which cannot happen if the
predictor variables are all perfectly uncorrelated.

To many students, “suppression” sounds like a bad thing. Perhaps
suppression sounds like “repression,” which is a Freudian construct not
positively viewed by most psychoanalysts as healthy over the long term.
But statistical suppression and psychological repression have nothing to
do with each other. Suppressor variables in multiple regression (and in
other analyses throughout the general linear model) make the R2 effect size
larger, even though the suppressor has little or no correlation with the cri-
terion variable.

So, suppressor effects are good, though they do complicate the inter-
pretation of results. Nevertheless, they honor the kinds of complex rela-
tionships that can occur in reality.

Variable X7 in variable set X4, X5, and X7, as predictors of Y
involves a suppression dynamic, as reflected in the Table 8.2 correlation
coefficients. Notice in Table 8.6 that the sum of the r2 values is 0.3468,
but the R2 value for these data is 54.677%, which is larger than the sum of
the r2 values!

Suppressor effects are quite difficult to explain in an intuitive manner.
Horst (1966) presented an actual example that is relatively accessible. He
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noted that during World War II the prediction of airplane pilot ability was
a major problem. At the start of the war, many trainees were crashing
their planes, killing their instructors, or simply failing their final checkout
flights such that precious training was wasted. But lots of data were avail-
able on the trainees. Basically, scads of men in World War II upon initial
admission to the armed forces were herded into auditoria, and completed
huge batteries of tests wearing their army-issued boxer shorts.

So psychologists approached this regression prediction problem by
using mechanical, spatial, and verbal abilities—all three predictors being
measured with paper-and-pencil tests—to predict the actual checkout
flight ratings of previous trainees (i.e., group 1). If the equation worked
well, new potential flight trainees (i.e., group 2) could be screened into (or
not into) training based on their �Y i scores.

The verbal scores had very low correlations with the dependent vari-
able, piloting ability, because flying has no systematic relationship with
verbal ability. But verbal scores had larger correlations with the other two
predictors, because the predictor variables were all measured with paper-
and-pencil tests (i.e., measurement artifacts confounded the mechanical
and spatial ability scores). As Horst (1966) noted, “Some verbal ability
was necessary in order to understand the instructions and the items used
to measure the other three abilities” (p. 355).

Counterintuitively, including verbal ability scores in the regression
equation actually served to remove the contaminating influence of the ver-
bal predictor from the other predictors, which effectively increased the R2

value from what the effect size would have been if only mechanical and
spatial abilities were used as predictors. The verbal ability variable had
negative b and β weights. As Horst (1966) noted

To include the verbal score with a negative weight served to suppress or sub-
tract irrelevant ability, and to discount the scores of those who did well on
the test simply because of their verbal ability rather than because of abilities
required for success in pilot training. (p. 355)

In regression, and throughout the general linear model, measured pre-
dictor variables can help predict or explain outcomes (1) directly or (2)
indirectly (by improving the predictive power of other predictor variables),
or both. The job of the multiplicative weights in regression (and in other
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GLM analyses) is to optimize the prediction in any (and every) way they
can.

Let’s look at an extreme example involving two measured predictor
variables, where rY × X1 = 0.707, rY × X2 = 0.000, and rX1 × X2 = –0.707. So,
based on Equation 8.12, we have

[0.707 – {(0.000)(–0.707)}] / [1 – –0.7072]
[0.707 – {(0.000)(–0.707)}] / [1 – 0.500]

[0.707 – {(0.000)(–0.707)}] / 0.500
[0.707 – 0.000] / 0.500

0.707 / 0.500
β1 = 1.414

and

[0.000 – {(0.707)(–0.707)}] / [1 – –0.7072]
[0.000 – {(0.707)(–0.707)}] / [1 – 0.500]

[0.000 – {(0.707)(–0.707)}] / 0.500
[0.000 – –0.500] / 0.500

0.500 / 0.500
β2 = 1.000

And, based on Equation 8.9, the squared multiple correlation can be
computed as

1.414(0.707) + 1.000(0.000)
0.999 + 0.000

R2 = 0.999

In this example, the presence of the X2 suppressor variables allows β1 to
escape its upper mathematical limit of +1.0 because the β weights are no
longer bivariate correlation coefficients.

The β weights are only Pearson correlation coefficients in Case #1. In
Cases #2 and #3, the β weights are not correlation coefficients. So, in cases
#2 and #3, the words “correlation” and “correlated” should never be used
when discussing β weights. Instead, in Cases #2 and #3 the β weights must
be interpreted as reflecting a number of fractional units (e.g., –1.571) of
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change in the �Y scores predicted for a corresponding 1 SD of change in a
given predictor variable, with scores on the other predictors all held con-
stant. Unfortunately, in published research this admonition for correct
practice is honored hugely more in the breach than in compliance
(Courville & Thompson, 2001).

This last example also makes another very important point: The latent
or synthetic variables analyzed in all parametric methods are always more
than the sum of their constituent parts. If we only look at observed vari-
ables, by only examining a series of bivariate rs, we can easily under- or
overestimate the actual effects that are embedded within our data. We
must use analytic methods that honor the complexities of the reality that
we purportedly wish to study—a reality in which measured variables can
interact in all sorts of complex and counterintuitive ways.

��� Weights versus Structure Coefficients

Debate over the relative merit of emphasizing β weights rather than struc-
ture coefficients during result interpretation has been fairly heated (H. R.
Harris, 1989, 1992). The position taken here is that the thoughtful
researcher should always interpret either (a) both the beta weights and the
structure coefficients or (b) both the β weights and the bivariate correla-
tions of the predictors with Y.

As noted previously, a regression structure coefficient (Cooley &
Lohnes, 1971, p. 55; Thompson & Borrello, 1985) is the bivariate Pearson
r of a measured predictor with the latent �Y scores (not with the Y scores,
unless R2 = 1.0). There are two ways to obtain the structure coefficient for
a given predictor variable. First, the �Y scores can be computed and then
correlated with the predictor variables. In SPSS, the �Y scores can be
obtained either by using the SAVE=PRED subcommand within the
REGRESSION procedure, or by invoking a series of COMPUTE commands.
Then the CORRELATIONS procedure is used to obtain the Pearson
product–moment correlations of all the predictors with the �Y scores.

Alternatively, for a given predictor variable, the structure coefficient
(rS) can be computed using the formula
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rS = rX with Y / R (8.15)

This computation is easily accomplished on a hand-held calculator or in
Excel. The equation makes clear that structure coefficients are score-world
results, because both values to the right side of the equal sign are score-
world, and no squaring operations have been invoked in the equation.

It has been noted by Pedhazur (1982) that structure coefficients “are
simply zero-order correlations of independent variables with the depen-
dent variable divided by a constant, namely, the multiple correlation coef-
ficient. Hence, the zero-order correlations provide the same information”
(p. 691). Thus, the structure rs and the predictor-dependent variable rs
will lead to identical interpretations, because they are merely expressed in
a different metric. Because rS = rX with �Y = [rX with Y / R], structure rs and
predictor-dependent variable rs will always have the same sign, because R
cannot be negative, and will equal each other only when R = 1.0.

Although the interpretation of predictor-dependent variable correla-
tions will lead to the same conclusions as interpretations of rSs, some
researchers have a stylistic preference for structure coefficients. As
Thompson and Borrello (1985) argued,

it must be noted that interpretation of only the bivariate correlations seems
counterintuitive. It appears inconsistent to first declare interest in an omnibus
system of variables and then to consult values that consider the variables
taken only two at a time. (p. 208)

The squared predictor-dependent variable correlation coefficients
inform the researcher about the proportion of Y variance explained by the
predictors. Squared structure coefficients inform the researcher about the
proportion of �Y (i.e., only the explained portion of Y) variance explained
by the predictors.

Some researchers object to interpreting structure coefficients, because
rSs are not affected by the collinearity (i.e., the correlations) among predic-
tor variables. Beta weights, on the other hand, are affected by correlations
among the predictors, and therefore may change if these correlations
change, or if any variables in a study are added or deleted. That is, β
weights are context-specific to a particular set of measured predictor vari-
ables.
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However, the insensitivity of rS is not an intrinsic weakness. Because
science is about the business of generalizing relationships across partici-
pants, across variables and measures of variables, and across time, in some
respects it is desirable that structure coefficients are not impacted by
collinearity. This insensitivity honors a reality in which measured predic-
tor variables are correlated, and rS is unaffected by this collinearity, which
is instead duly considered when computing the β weights.

On the other hand, when the measured variables in a study are the
only variables of interest for the researcher’s purposes in a fixed context,
then one is less concerned by the impacts of collinearity among a fixed set
of predictors. Here the context specificity of the β weights is less troubling.
Obviously, the utility of statistics, including structure coefficients, varies
somewhat from problem to problem or situation to situation.

Other researchers are troubled by the fact that structure rs are inher-
ently bivariate. One response is that all conventional parametric methods
are correlational (e.g., Knapp, 1978), and that even a multivariate method
such as canonical correlation analysis can be conceptualized as a bivariate
statistic (Thompson, 1991a). Indeed, R itself is a bivariate statistic, albeit
one involving a synthetic variable, because

RY with X1, X2, . . . , Xj = rY with Ŷ (8.16)

and

RY with X1, X2, . . . , Xj
2 = rY with Ŷ

2 (8.17)

It should also be noted that rS is not really completely bivariate, in that rS is
a correlation involving �Y (not the measured variable, Y), and �Y is itself a
synthetic or latent variable involving all the predictor variables.

Interpreting only β weights is not sufficient (Courville & Thompson,
2001), except in Case #1, or in the one-variable situation, because then
r = β, and rS = 1.0 (unless R = 0.0, in which case rS is undefined). Together,
through their stereoscopic representations of data dynamics, the β weights
and the structure coefficients tell the researcher which situation applies to
the data. Three possibilities exist. In these situations, a predictor variable
with both β = 0 and rS = 0 is always clearly and definitely useless, but oth-
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erwise the predictor is not definitively useless, and should not be inter-
preted as being useless.

Possibility 1

When the β weights of multiple predictors each equal the predictors’
respective rs with Y (and each rS = rY with X / R = β / R), then the researcher
knows that the predictors are uncorrelated. In this situation, interpreting
β, or structure coefficients, or predictor-dependent variable correlations
will all lead to identical conclusions about the importance of predictor
variables.

Possibility 2

When predictors have nonzero βs, some of which do not equal the predic-
tors’ respective rs with Y, then predictor variables are correlated with each
other (i.e., are collinear or multicollinear). Assuming no suppression, the
R2 will be less than the sum of the r2s. Both β weights and structure coeffi-
cients must be interpreted. And a predictor with a zero or near-zero β
weight may have the largest |rS|, and be the best single predictor, albeit
being denied credit in the context-specific dynamics of the β weights.

Possibility 3

Iff a predictor has, at the extreme, a zero structure coefficient (and a zero
correlation with Y), the predictor may be a suppressor variable. There are
two ways to distinguish whether the predictor is merely useless, or instead
is a suppressor variable. First, if this predictor has a nonzero β weight,
then suppressor effects are present. Second, if the R2 with the possible sup-
pressor included in the analysis is greater than the R2 with the possible
suppressor not included in the analysis, then this predictor variable is a
suppressor. Either of the two strategies will always lead to the same con-
clusion about suppression for a given data set.

The importance of understanding suppressor effects is not to suggest
that such predictors should necessarily be sought out when the measured
variables are selected. Anticipating what predictors may be suppressors in
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forthcoming research can be difficult. However, suppression effects are
not uncommon throughout the general linear model, and correct result
interpretation may turn upon an awareness that these effects can occur
even when the dynamics were not anticipated (Tzelgov & Henik, 1991).

��� A Final Comment on Collinearity

As noted previously, collinearity (or multicollinearity) simply refers to the
fact that the measured predictor variables have nonzero bivariate correla-
tion coefficients with each other. Traditionally, researchers sought predic-
tor variable sets in which the predictors had as little bivariate correlation
with each other as possible. This was accomplished in various ways, such
as dropping some predictors that were highly correlated with other predic-
tors, or combining highly correlated subsets of predictors into single
scores by averaging or summing the predictors in a given subset, or by
other methods. This objective was pursued for several reasons, some of
which are no longer relevant.

First, as suggested by Equations 8.12 and 8.13, when predictors are
very highly correlated, precision in the calculation of the β weights may
become problematic. For example, the denominator in the calculation
(e.g., [1 – rX1 × X2

2]) may become quite small. However, this consideration is
trivial in the presence of modern computers and software, which accu-
rately perform calculations to many more decimal places than was possi-
ble when computations were performed by humans using calculators.

Second, investigators sought research situations in which result inter-
pretation was simple and straightforward. This is accomplished when
working in Case #1, because, here, interpreting βs, or structure coeffi-
cients, or predictor-dependent variable correlations will all three lead to
the same conclusions about the importance of the predictor variables.
However, most researchers posit living in a reality in which measured vari-
ables are rarely, if ever, perfectly uncorrelated. Accomplishing simplified
interpretation at the expense of creating sets of variables that do not
honor reality may seem too high a price to pay for easier result interpreta-
tion.

Third, as predictor variables are more correlated, the standard errors
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of the b weights are inflated. Either large correlations among a few predic-
tors, or small correlations among a large set of predictors, can be poten-
tially problematic. The resulting tCALCULATED (or Wald, or critical ratio) test
statistics for evaluating the nil null hypothesis that a given weight is zero
becomes smaller. And for a given b weight, the same t value applies to the
related β weight. The implication is that with highly correlated predictors,
the possibility arises that fewer (and perhaps none) of the weights will be
deemed statistically significantly different from zero.

This problem is less troubling if the weights are instead evaluated by
direct comparison with the values in related prior studies. Interpreting the
weights via direct comparison with related results in prior studies also
avoids the problem that NHSST results in different studies are not compa-
rable when studies involve different sample sizes (Ziliak & McCloskey,
2004). However, the problem of inflated standard errors is a factor that
warrants some consideration when researchers are selecting predictor vari-
ables, and again when researchers are interpreting results involving corre-
lated predictors.

The take-home message is that the explicit, direct comparison of
results with those in related studies is always very useful (if not vital). No
one study means very much in isolation, at least as regards the particular
values of the statistical estimates themselves.

Some Key Concepts

Iff the predictors are all completely useless, the b and the β weights
will all be zero, and a will equal MY. Also, given that universally

R2 = β1(rY × X1) + β2(rY × X2) + . . . +βj(rY × Xj) (8.9)

for this situation, R2 will equal zero. Iff R2 = 0, because the b and the
β weights are all zero, the �Y i scores will all equal a and MY, and not
constitute a variable. Iff R2 = 1, the ei scores will all equal zero and
not constitute a variable.

The Yi and the �Y i scores always have the same mean. The mini-
mum SD and SOS of the �Y i scores is zero, which occurs iff R2 = 0. The
maximum SD of the �Y i scores is SDY, and the maximum SOS of the �Y i

scores is SOSY. The maximum dispersion of the �Y i scores is reached iff
R2 = 1. The β weights are correlation coefficients iff we are in Case
#1.
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The R2 is an “on the average” characterization of how closely the
Yi and the �Y i scores match for different participants. Thus, if R2 is
50%, this does not mean that the ei scores are equal for each person,
and instead some ei may be zero while others are relatively large. Only
when R2 = 1 can we apply the characterization of this effect size both
to the dataset generically and across all individuals.

��� Reflection Problems ���

1. Given the use of z scores for all measured variables, when are �Y i scores

also z scores? Given the use of z scores for all measured variables, when

are ei scores also z scores?

2. A researcher tells you only one result from her study: a β = –2.5. List

everything that can be deduced about the design and the study’s results.

3. β weights are correlation coefficients iff we are in Case #1. However, in

all cases, β weights indicate how many units of change will occur in �Y i for

one unit of change in a given predictor variable, holding all other predic-

tors constant. In Chapter 5 it was asserted that r is not itself intervally

scaled. However, in Case #1, if β1 = +1.0 and β2 = +0.5, 1 SD of change in

X1 does yield twice as much predicted change in �Y i than does one unit of

change in X2. Does this mean that in the metric of scores, and not in the

metric of the SOS, r is an intervally-scaled indicator of the relative leverage

of predictors in Case #1?
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9

A GLM
Interpretation Rubric

R
esult interpretation strategies must be governed by the researcher’s
purpose. The research purpose impacts what coefficients are rele-
vant, or what benchmarks are used to evaluate sample results, or
both. For example, in an explanation or theory-testing study, per-

haps the only judgment will be whether the detected effect size (e.g., R2) is
comparable to a theoretically-predicted value, regardless of which predic-
tor variables may contribute to the effect. Conversely, in another theory-
focused study, perhaps the overall effect size is well established across
studies, and will not be of primary interest.

Model specification error occurs when (a) predictor variables that
should not be used are included in the model, or (b) necessary predictor
variables are omitted, or (c) the incorrect analysis is used (e.g., a linear
form of relationships is modeled when relationships are curvilinear or
logistic). If the researcher believes that model specification error is not at
issue, then the β weights may be of more interest in interpretation, because
the context specificity of the weights is not a limitation if the analytic con-
text is deemed correctly-specified.
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But as Pedhazur (1982) has noted, “The rub, however, is that the true
model is seldom, if ever, known” (p. 229). And as Duncan (1975) has
noted, “Indeed it would require no elaborate sophistry to show that we
will never have the ‘right’ model in any absolute sense” (p. 101).

Here a generic interpretation rubric, one with wide utility, is offered.
Because multiple regression is the univariate general linear model (Cohen,
1968), and is a subcomponent within the multivariate general linear
model (Knapp, 1978), this interpretation rubric has wide applicability
across various analyses.

The proposed rubric involves two hierarchical steps. First, the
researcher asks, “Do I have anything?” Second, if and only if (iff) the
answer to the first question is yes, only then does the researcher ask,
“Where does my something come from?” It is not logical to obtain noth-
ing, and then ask, “From where does my nothing originate?”

��� Do I Have Anything?

Researchers can interpret any combination of three pieces of evidence to
address the question, “Do I have anything?” Different researchers will
make different choices about what evidence to consider, or differentially
emphasize different evidence.

Statistical Significance

Some researchers begin interpretation by evaluating the nil null hypothesis
that H0: R2 = 0 (or, equivalently, H0: R = 0). Table 9.1 presents the requi-
site calculations. The first step involves computing the SOS of the Yi

scores, using Equation 3.1, or an algebraically equivalent formula. This
sum of squares is sometimes called the SOSTOTAL. This is the variability
(i.e., the information about the amount and origins of individual differ-
ences) that we are trying to explain using the predictor variables.

Next, the SOSEXPLAINED (SOSMODEL, SOSREGRESSION, SOSBETWEEN) is com-
puted. As noted in Chapter 8, once the regression weights are derived, the
�Y scores can be computed. Applying Equation 3.1 (or an algebraically
equivalent formula) to the �Y i scores yields the SOSEXPLAINED.
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Then, the SOSUNEXPLAINED (SOSERROR, SOSRESIDUAL, SOSWITHIN) can be
computed. Because the �Y i scores and the ei scores are always perfectly
uncorrelated, SOSEXPLAINED + SOSUNEXPLAINED = SOSTOTAL (SOSY), and the
SOSUNEXPLAINED can be computed by subtraction (SOSTOTAL – SOSEXPLAINED).
Alternatively, Equation 3.1 can be applied to the ei scores to obtain the
SOSUNEXPLAINED.

The regression effect size (R2) can be computed using Equation 8.6
(R2 = SOSŶ / SOSY). If a “corrected” effect size is desired, the regression
analog of the Ezekiel (1930) correction can be applied to obtain the
“adjusted R2”:

1 – ((n – 1) / (n – v – 1))(1 – R2) (9.1)

where n is the sample size and v is the number of predictor variables. The
formula can be equivalently expressed as

R2 – ((1 – R2)(v / (n – v – 1))) (9.2)

Next, the degrees of freedom (df) must be computed. The dfTOTAL

equals n – 1. For multiple regression analysis, the dfEXPLAINED (dfMODEL,
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TABLE 9.1. Variance Partitions Summary Table

Source SOS df MS FCALCULATED Effect size

Between groups d f h j k
Within groups e g i
Total a b c

Note. a = d + e.
b = n – 1.
f = the number of predictor variables in the regression analysis.
g = n – 1 – the number of predictors in the regression analysis.
b = f + g.
h = d / f.
i = e / g.
c = a / c = SDY

2.
c ≠ h + i.
j = h / i, assuming i ≠ 0.
k = d / a = (a – e) / a.



dfREGRESSION, dfBETWEEN) equals the number of predictor variables. The
dfUNEXPLAINED (dfERROR, dfRESIDUAL, dfWITHIN) can be computed by substraction
(dfTOTAL – dfEXPLAINED). Alternatively, the dfUNEXPLAINED can be computed as
n – 1 – v, where v is the number of predictor variables.

At this point, we can compute the variance of the Yi scores by dividing
the SOSY by dfTOTAL. However, because the test statistic used for this
NHSST application is the F ratio, an area-world statistic, we also need
two additional variances to compute FCALCULATED.

We compute the mean square explained (MSEXPLAINED, or MSMODEL,
MSREGRESSION, MSBETWEEN) by dividing SOSEXPLAINED by dfEXPLAINED. Note that
this is also a variance estimate, even though the label used is “mean
square.” We compute the MSUNEXPLAINED (MSERROR, MSRESIDUAL, MSWITHIN) by
dividing SOSUNEXPLAINED by dfUNEXPLAINED. Again, the mean square unex-
plained is a type of variance, and is an area-world statistic.

Then, when possible, we compute the FCALCULATED by dividing the
MSEXPLAINED by the MSUNEXPLAINED. However, if the R2 is 100% (and the
SOSEXPLAINED = SOSTOTAL, and SOSUNEXPLAINED = 0), the MSUNEXPLAINED equals
zero, and the FCALCULATED is undefined (i.e., cannot be computed). This
means that, ironically, we cannot perform NHSST whenever we can per-
fectly predict or explain an outcome variable.

Given α, we perform the statistical significance test by comparing the
FCALCULATED with dfEXPLAINED and dfUNEXPLAINED with the FCRITICAL with
dfEXPLAINED and dfUNEXPLAINED. As noted in Chapter 3, we can obtain the
FCRITICAL for any α and any degrees of freedom by invoking the Excel FDIST

statistical function. Alternatively, we can determine the pCALCULATED value
by invoking the Excel FINV statistical function, and then compare
pCALCULATED with pCRITICAL to determine whether or not to reject H0: R2 = 0.

Of course, SPSS and other statistical packages automate all these cal-
culations. If we wish, we may augment these results by performing “what-
if” analyses using the Figure 6.3 spreadsheet. Or we can use the “what-if”
spreadsheet proposed by Thompson and Kieffer (2000) instead invoking
“corrected R2.”

Effect Size

The regression effect size is R2, or the “corrected” or “adjusted” R2. The
effect size is an index of the practical significance of results (Kirk, 1996).
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As strongly emphasized in Chapter 7, the correct interpretation of effect
sizes does not invoke Cohen’s benchmarks for “small,” “medium,” and
“large” effects, except perhaps when research is being conducted in a
ground-breaking venue. Instead, the correct interpretation of results
focuses on direct, explicit comparison of effects with those in the related
prior literature (Thompson, 2002b, in press).

The effect size statistics inform the researcher’s subjective value judg-
ment about the noteworthiness of the results. This value judgment turns
on the researcher’s personal valuing of the outcome variable. Two
researchers studying the same outcome and realizing identical effect sizes
may reasonably reach different judgments about result noteworthiness, if
they differ in their valuing of the outcome variable.

The process of evaluating effect sizes is not totally objective. No form
of research, including quantitative research, is completely objective. Judg-
ment cannot be avoided. And, as noted in Chapter 6, NHSST provides
only an illusory escape from the atavistic desire to avoid making judg-
ments, because NHSST is not without limitations.

One of the most potent ways of thinking about effect sizes is to think
of effects as statistics that quantify model fit, or as the obverse of model
specification error. As noted in Chapter 8, every statistical analysis fits a
model to data. As the effect size (e.g., R2) approaches mathematical limits,
or takes on large values, there is evidence that the correct variables and the
correct analysis have been used, and that the model is one plausible model
that fits the data.

Of course, using effect sizes as indices of model fit presumes that the
model is “falsifiable” given the research situation (Popper, 1961, 1965).
Some analyses inevitably generate perfect (or near perfect) fit if the degrees
of freedom error is (or approaches) zero. Every model with dfERROR = 0 will
perfectly fit the data, and yield an R2 of 100%, regardless of what the
measured variables are. Thus, large effect sizes provide stronger evidence
of model fit when the degrees of freedom error is larger.

One way to think of dfERROR is as a measure of how many more predic-
tor variables might potentially be added to the analysis. Large effect sizes
are potentially more impressive when relatively few predictor variables are
used, and additional predictors that could have been added are deemed
unnecessary.

To see that models with zero degrees of freedom error inevitably yield
R2 = 100%, consider an example involving bivariate correlation. If we have
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n = 2 paired scores on Xi and Yi, and both Xi and Yi are variables, then r2 can
only be 100%. Think of the bivariate scattergram. The two asterisks within the
scatterplot will define a straight line and, inevitably, will be captured by the
regression line. For this problem, dfTOTAL = 1, dfEXPLAINED = 1, and dfERROR = 0.

The same dynamic occurs as we add predictor variables. For n = 3,
and scores on Yi and any other two variables used as predictor variables,
R2 can only be 100%. For n = 4, and scores on Yi and any other three vari-
ables used as predictor variables, R2 can only be 100%. So, large effect
sizes are more impressive when degrees of freedom error are large, and the
effect size was not inevitably large.

It is important to be thoughtful when interpreting effect sizes, because
the metrics of standardized differences and variance-accounted-for effect
sizes can be slippery (Olejnik & Algina, 2000). Medical researchers do not
confront these problems, because they conventionally use unstandardized
effect sizes, as noted in Chapter 7. A comparison of deaths per thousand
for a new medication versus deaths per thousand for a control condition is
straightforward, even if the value judgment inherent in the interpretation
remains difficult.

For example, let’s say a researcher is trying to predict body tempera-
ture differences in a group of 100 healthy adults, and that three predictor
variables yield a huge R2 of 75%. Perhaps SOSTOTAL = 9.0 (SDY

2 = 0.09;
SDY = 0.30). This huge effect size is not compelling if the sum of squares
does not contain any clinically meaningful information about the amount
of individual differences, because explaining a lot of something about
which we don’t care is uninteresting.

Conversely, very small effect sizes for outcome about which we care
deeply may be noteworthy. For example, the variance-accounted-for effect
size for predicting heart attack incidence based on taking a daily aspirin or
a placebo is only 0.11%, as explained in Chapter 5. Yet during the study,
those taking aspirin were half as likely as the placebo group to have had
an infarct (Rosenthal, 1994)!

Replicability Analyses

The classical view is that science is the business of discovering laws (rela-
tionships) about effects that occur (and reoccur) under stated conditions.
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And because statistical significance does not evaluate result replicability,
we need to do other analyses.

Researchers do sometimes discover important effects that others have
difficulty replicating. For example, in 1989, Pons and Fleischmann, two
scholars working at the University of Utah, held a press conference
announcing that they had created “cold fusion” by passing an electrical
current through palladium electrodes immersed in so-called heavy water
(i.e., water in which the hydrogen was replaced with its isotope, deute-
rium). This raised the prospect that cold fusion at room temperature could
produce essentially unlimited, low-cost, clean energy.

This discovery produced excitement worldwide, as well as a flurry of
research activity. Unfortunately, most researchers were unable to replicate
the original findings. Today, scientists are still working to understand
related phenomena. Nevertheless, a view emerged that cold fusion was not
a panacea for the world’s energy and pollution problems.

Discovering important relationships that few, if any, other scholars
can replicate may yield intense adulation for a very brief 15 minutes of
fame, followed by a life of considerable disdain and skepticism. Therefore,
most scholars eschew making such discoveries (except, perhaps, when they
are nearing retirement).

Traditionally, social scientists have attempted (incorrectly) to use
NHSST as a vehicle to evaluate result replicability. Unfortunately, NHSST
is not a useful tool for this purpose, as explained in previous chapters.
How can researchers evaluate the replicability of their results, given that
NHSST does not do so?

A critical protection against overinterpretation of serendipitous results
is “meta-analytic thinking” (Cumming & Finch, 2001). Thompson
(2002b) defined meta-analytic thinking as

both (a) the prospective formulation of study expectations and design by
explicitly invoking prior effect sizes and (b) the retrospective interpretation of
new results, once they are in hand, via explicit, direct comparison with the
prior effect sizes in the related literature. (p. 28; emphasis added)

According to Kline (2004), meta-analytic thinking has four features:

1. An accurate appreciation of the results of previous studies is seen as essen-
tial.
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2. A researcher should view his or her own study as a modest contribution to
that body of previous research.

3. A researcher should report results so that they can be easily incorporated
into a future meta-analysis. This includes the reporting of effect sizes and
confidence intervals.

4. Retrospective interpretations of new results, once collected, are called for
via direct comparison with previous effect sizes. (p. 12)

As regards empirical replicability evidence, Thompson (1996) drew a
distinction between two types: external and internal. External replicability
analysis requires completely replicating the study in an independent sam-
ple. Internal replicability analysis attempts to mimic true replication with-
out requiring a new sample by invoking one or more of three statistical
logics: the bootstrap, the jackknife, or cross-validation (see Thompson,
1994b).

Only external, true replication provides direct evidence about whether
study results will replicate. The challenge is that external replication is
expensive and time-consuming. For example, folk wisdom holds that some
doctoral students graduate only after their partner declares, “Honey, you
will defend this dissertation next semester, or I am out of here.” The mari-
tal consequences of expecting all doctoral students to replicate results
would be unspeakable. Similarly, the employment consequences of expect-
ing all junior faculty to replicate results prior to publishing, given only a 5-
or 6-year pretenure stream, are also unimaginable.

An important challenge to replicability in the social sciences is that
people are individually so idiosyncratic. Physical scientists do not have to
confront these differences, which in many respects make social science the
hardest science of all (Berliner, 2002). For example, a physicist who is
observing the interaction patterns of atomic particles does not have to
make generalizations such as, “Quarks and neutrinos repel each other,
unless the quarks in gestation had poor nutrition or in childhood received
poor education.”

Internal replicability analyses seek partially to overcome these chal-
lenges by mixing up the participants in different ways in an effort to evalu-
ate whether results are robust across the combinations of different
idiosyncrasies. Internal replicability analyses are never as persuasive as
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external replication. But internal methods are far superior to what many
researchers do to evaluate result replicability (i.e., nothing, or NHSST).

Bootstrap

The bootstrap (sometimes called “resampling”) is the first of two
“computer-intensive” internal replicability analyses (i.e., the bootstrap
and the jackknife). These methods, articulated by Efron and his colleagues
(e.g., Efron, 1979; Efron & Tibshirani, 1993), are called computer inten-
sive because they are logistically difficult (or impossible) without the use
of modern computers and specialized software (e.g., Thompson, 1988b,
1992a).

Bootstrap methods are only briefly considered here, given their
computer-intensive character. Diaconis and Efron (1983) and Robertson
(1991) provide intuitive but conceptually elegant summaries of these
methods. The methods are discussed in more technical detail elsewhere
(e.g., Lunneborg, 1999, 2001).

Given a sample, and no access to the population (or the sample study
would not be conducted), one challenge is to estimate the sampling distri-
bution. The bootstrapped sampling distribution can be used for either
inferential or descriptive purposes (Thompson, 1993).

In inferential applications, the bootstrapped sampling distribution is
used (a) to obtain the pCALCULATED for inferential purposes, or (b) to com-
pute a t (or Wald or critical ratio) statistic (i.e., statistic / SESTATISTIC) to per-
form NHSST using the nil null that a given parameter equals zero. In some
cases the sampling distribution or a test statistic distribution can be mathe-
matically derived when certain assumptions can be met (e.g., that regres-
sion ei scores are normally and independently distributed). The bootstrap
can be used for inferential NHSST purposes when (a) the statistical
assumptions of mathematical estimates cannot be met, or (b) mathemati-
cally derived sampling distribution estimation procedures have not yet
been developed. We do not have a sampling or a test distribution for every
possible statistic and research situation, so the bootstrap can be used to fill
these gaps.

In descriptive applications, the bootstrapped sampling distribution is
used (a) to characterize the amount of sampling error variance in the sam-
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ple data as regards a particular statistic, or (b) to inform professional judg-
ment about the likely stability of a given estimate. The bootstrap grounds
SE and other estimates in features of the sample data rather than on theo-
retical assumptions that certain statistical conditions hold for estimating
an SE with a generic formula (e.g., Equation 6.6 for the SEM).

When we employ the bootstrap for inferential purposes (i.e., to esti-
mate the probability of the sample statistics), focus shifts to the extreme
tails of the sampling distribution—where the less likely (and less frequent)
statistics are located—because we typically invoke small values of p in sta-
tistical tests. These are exactly the locations where the estimated distribu-
tion densities are most unstable, because there are relatively few statistics
here (presuming the sampling distribution does not have an extraordi-
narily small SE). Thus, when we invoke the bootstrap to conduct statisti-
cal significance tests, extremely large numbers of resamples are required
(e.g., 2,000, 5,000).

However, when our application is descriptive, we are primarily inter-
ested in the mean (or median) value in the bootstrapped sampling distribu-
tion, and the standard deviation from the bootstrapped sampling
distribution. The standard deviation of the statistics in the bootstrapped
sampling distribution is an empirically-estimated standard error of the sta-
tistic. These values (M or Mdn, and the SE) are less dependent on large
numbers of resamples. This is said not to discourage using large numbers
of resamples (which are essentially free, given modern microcomputers),
but is noted instead to emphasize that these two uses of the bootstrap have
distinct purposes.

To make the conceptual discussion of the bootstrap concrete, consider
a situation in which a researcher has scores of 100 students on a statistics
exam. The researcher’s primary interest might be the statistic median (e.g.,
MdnX = 72.0), and some descriptive estimate of the SEMdn for this particu-
lar statistic.

The initial step in the bootstrap is to create a pseudo-population from
which repeated samples can be drawn, statistics are computed in each, and
thus the bootstrapped sampling distribution is estimated across these
resamples. One way to think about this is to suggest concatenating all the
100 rows of our dataset (i.e., appending a copy of the datafile on the back
of the file) such that we now have 200 rows of data. Then we concatenate
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the data again, creating 300 rows of data. This is done repeatedly, a huge
number of times.

We can then draw a large number of resamples from this pseudo-
population, computing the statistic of interest (here MdnX). We draw
every resample at exactly our original sample size, here n = 100, because
sample size impacts sampling error variance, and it is exactly this feature
of sampling that we are attempting to model.

In our first resample, Geri, say, might be drawn three times, while
Murray is drawn once, and Wendy is not drawn at all. In our second
resample, Geri might be drawn once, while Murray is drawn twice, and
Wendy is drawn five times. We are modeling how different combinations
of idiosyncratic people impact our statistic. The bootstrap is so powerful,
because the bootstrap mixes the cases in the original sample up in so many
different ways. This may be the closest we can come to external replica-
tion, if we limit ourself only to manipulating our original sample data,
rather than collecting new data.

For each sample, we compute the median, and compile the sampling
distribution, let’s say over 5,000 resamples. With a modern microcom-
puter and the correct software, this will require only a few moments. We
then compute the mean (or median) and the standard deviation of the
5,000 bootstrapped statistics (i.e., the empirically—not theoretically—esti-
mated SEMdn).

In actuality, the resamples are drawn by randomly selecting cases with
replacement. This is logistically easier than concatenating the original
dataset, and is more precise because sampling with replacement is equiva-
lent to resampling from a concatenated pseudo-population in which the
dataset was concatenated infinitely many times.

Jackknife

A second “computer-intensive” internal replicability analysis is the jack-
knife, articulated by John Tukey and his colleagues. The jackknife involves
first computing results for the sample. Then subsets of cases in the dataset
are successively dropped, and the analysis is repeated in turn using each
subset. The subsets are created by dropping some one number of cases, k,
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in each jackknife resample, subject to the restriction that k is evenly divisi-
ble into n.

A common set size for dropping cases is k = 1. The sample size, n, is
always evenly divisible by k = 1. For example, if n = 300 for a regression
analysis with four predictors, the analysis would be performed with all
300 cases, and then 300 times dropping 1 case in turn so that each
resample involved 299 cases of data.

Dropping one case at a time has the advantage that cases with a dis-
proportionate influence on the results (i.e., potential outliers) can be
detected. Once all the analyses (e.g., 301 regression analyses) are com-
pleted, some additional computations are usually performed to build
jackknifed confidence intervals about the parameter estimates and thereby
to evaluate whether the sample statistics fall within their respective confi-
dence intervals.

However, the bootstrap combines participants in more ways than
does the jackknife. Because both the bootstrap and the jackknife require
specialized software (or considerable time and patience), both analyses are
typically done with specialized software that makes these analyses pain-
less. Given an automated computer-intensive analysis and the elegance of
the bootstrap, most researchers choosing between the two computer-
intensive methods will opt for the bootstrap (unless they are primarily
interested in outlier detection).

Cross-Validation

Cross-validation involves randomly splitting the sample into two subsets,
and then replicating the primary analysis in both subgroups (Huck,
Cormier, & Bounds, 1974, pp. 159–160; Thompson, 1989a). Advocacy
for these methods is not new (Mosier, 1951). These analyses can be con-
ducted with commonly available statistical software.

For purposes of clarity (things get confusing if both subgroups have
the same sample size), usually the sample is randomly split into two sub-
groups of almost equal, but not equal sizes. When more rigorous evalua-
tions of internal replicability are desired, the subgroups may be disparate
in size (e.g., 75% of n and 25% of n, or 90% of n and 10% of n). The evi-
dence is more compelling when the results from the smaller subgroup (e.g.,
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10% of n) replicate well in the larger subgroup (e.g., 90% of n). The use
of disparate subgroup sizes may be more reasonable when n itself is quite
large.

If the replicability of subgroup 1’s results in subgroup 2 is evaluated,
and the replicability of subgroup 2’s results in subgroup 1 is also evalu-
ated, the internal replicability analysis is called double cross-validation.
Because the marginal increase in work over cross-validation is minimal,
and the replicability evidence is more compelling when the evidence is con-
sistent across both subgroups, researchers using this strategy invariably
conduct double cross-validation.

Table 9.2 presents a small (n = 15) dataset that will be used to illus-
trate the application. The sample size is ridiculously small but sufficient
for the reader to easily replicate the analysis without having to type a large
datafile.

The example presumes a multiple regression problem with two predic-
tor variables. The dataset also includes a variable (INV_GRP), reflecting
random assignment to the two subgroups by coin flip, subject here to the
restriction that n1 = 8 and n2 = 7.

Figure 9.1 presents the SPSS syntax required for the analysis. The
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TABLE 9.2. Heuristic Data for
Regression Double Cross-Validation Example

Variable

Case Y X1 X2 INV_GRP

1 2.0 0 9 1
2 2.0 2 6 1
3 2.2 4 3 2
4 2.6 6 1 1
5 3.2 8 0 2
6 4.0 10 0 1
7 5.0 12 1 2
8 6.2 14 3 1
9 9.8 16 6 2

10 7.6 18 13 1
11 6.3 11 4 1
12 8.9 17 5 2
13 7.7 15 6 2
14 2.7 16 7 1
15 3.3 9 7 2
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FIGURE 9.1. SPSS syntax for regression double cross-validation

Note. The analysis in conducted in two phases. First, the analysis using the lowercase
syntax is completed. The output contains statistics necessary (e.g., predictor variable
means and standard deviations, and the β weights) for completing and executing the
second portion of the syntax, presented in capital letters. SPSS syntax commands are
not case sensitive.



analysis in conducted in two phases. First, the analysis using the lowercase
syntax is completed. The resultant output contains statistics (e.g., predic-
tor variable means and standard deviations, and the β weights) necessary
for completing and executing the second portion of the syntax, presented
in capital letters. The SPSS syntax commands are not case sensitive.

The first step in the analyses is to compute in both subgroups the
descriptive statistics for the predictor variables and the regression β
weights. The syntax tricks SPSS into presenting descriptive statistics to
more decimal places by creating new variables (X1_1000 and X2_1000)
by multiplying the predictors (X1 and X2) by 1,000. Given the impact of
multiplicative constants on M and SD, explicated in the exercises for
Chapters 2 and 3, the means and standard deviation of X1 and X2 to
more decimal places can be computed by dividing the means and SDs of
X1_1000 and X2_1000 by 1,000.

These means and standard deviations are then used in COMPUTE state-
ments to create z scores on the predictors for both subgroups (respectively
named ZX1_1 and ZX2_1 in subgroup 1 and ZX1_2 and ZX2_2 in sub-
group 2). The Table 9.3 results confirm that these scores are indeed in z-
score form (i.e., means = 0.0; SDs = variances = 1.0). We compute these
descriptive statistics to confirm that the z scores were correctly calculated.

Table 9.4 presents the regression results output by SPSS for both sub-
groups. If the R2 values across the two subgroups differ widely from each
other and/or from the R2 value in the full sample, then the effect size
appears to be unstable, and the results are deemed to replicate poorly.
Conversely, if the R2 values and the β weights for given variables match
across the two subgroups, then clearly both the effect sizes and their ori-
gins appear to replicate internally.
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TABLE 9.3. SPSS Output of Descriptive Statistics
for z Scores in Both Subgroups

Variable Mean SD Valid N Variable label

ZX1_1 0.00 1.00 8 ‘z-score version of X1, subgroup 1’
ZX2_1 0.00 1.00 8 ‘z-score version of X2, subgroup 1’
ZX1_2 0.00 1.00 7 ‘z-score version of X1, subgroup 2’
ZX2_2 0.00 1.00 7 ‘z-score version of X2, subgroup 2’



However, if the R2 values are comparable, but the β weights differ
across the subgroups, our work is not yet done. We must conduct further
empirical analyses to investigate whether the β weights are different, but
still yield reasonably comparable �Y scores across the two subgroups.

Cliff (1987, pp. 177–178) suggested that such cases involve “insensi-
tivity” of the weights. For example, if all the predictors were highly, posi-
tively correlated with each other and with the dependent variable, any one
predictor could arbitrarily be given a β weight of roughly 1, while the
other variables would arbitrarily be given weights of roughly 0. All of the
various possible combinations of a single β weight of 1 with several
weights of 0 might appear different in the subjective judgment of the
researcher, but would yield essentially equivalent �Y scores.

So, what is the same is the same. But what appears to be different may
be the same (i.e., still yield roughly equivalent prediction). In the latter
case, empirical analysis informs judgment as to whether apparent differ-
ences in the β weights are meaningless, or they are noteworthy.

As reflected in the Figure 9.1 SPSS syntax, the empirical analysis is
conducted as follows:

1. The predicted outcome scores for subgroup 1 are computed using
subgroup 1’s data (the first number in the variable name) and β
weights (the second number in the variable name; here YHAT11
with n1 = 8).

2. The predicted outcome scores for subgroup 2 are computed using
subgroup 2’s data and β weights (here YHAT22 with n2 = 7).
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TABLE 9.4. SPSS Subgroup Regression Coefficients
for the Figure 9.1 Syntax

Subgroup

Statistic n1 = 8 n1 = 7

Multiple R 0.73948 0.95729
R Square 0.54683 0.91641
Adjusted R Square 0.36556 0.87462
β1 0.719003 0.920505
β2 0.085253 0.078289



3. The predicted outcome scores for subgroup 1 are computed using
subgroup 1’s data and subgroup 2’s β weights (here YHAT12 with
n1 = 8).

4. The predicted outcome scores for subgroup 2 are computed using
subgroup 2’s data and subgroup 1’s β weights (here YHAT21 with
n2 = 7).

The 10 Pearson product–moment correlations of these four variables and
the Yi scores are then computed, as reported in Table 9.5.

Note that we are invoking β weights from the standardized score
world, but we are using Y scores from the unstandardized score world. In
the present application, this is inconsequential. The �Y scores from the stan-
dardized and the unstandardized worlds are always perfectly correlated,
because additive and multiplicative weights do not affect r, as we learned
in the Reflection Problems of Chapter 5. For the same reason, the r of the
Yi scores and the �Y scores from the unstandardized score world always
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TABLE 9.5. SPSS Output of Pearson r Coefficients

Note. The ns are presented in parentheses.
aThese are the multiple correlation coefficients (R) in the two subgroups.
bThese are the “shrunken” multiple correlation coefficients (R) in the two subgroups (e.g.,
0.9573 to 0.9569). The shrinkage equals the difference in the R2 versus the shrunken R2 (e.g.,
0.95732 – 0.95692 = 0.9164 – 0.9156 = 0.0008). The proportion of the shrinkage can be
expressed as 0.0008 / 0.9164 = 0.0009 = 0.09%.
cThese are the invariance coefficients in the two subgroups, correlating the true �Y scores in a
given subgroup with the �Y scores computed using the weights from the opposite subgroup.



equals the r of the zY scores and the �Y scores from the standardized score
world.

Two of these rs in Table 9.5 are actually multiple correlation coeffi-
cients (Rs). First, the rY × YHAT11 in subgroup 1 (n1 = 8) equals subgroup 1’s
RY with X1, X2 (n1 = 8); as reported in Table 9.5, rY × YHAT11 = 0.7395, and in
Table 9.4, RY with X1, X2 = 0.73948, respectively. Second, the rY × YHAT22 in sub-
group 2 (n2 = 7) equals subgroup 2’s RY with X1, X2 (n2 = 7); as reported in
Table 9.5, rY × YHAT22 = 0.9573, and in Table 9.4, RY with X1, X2 = 0.95729,
respectively. These comparisons are important from both a conceptual
and a practical point of view.

Conceptually, the recognition that a bivariate

rY × Ŷ = RY × X1, X2 . . . (9.3)

and equivalently that

rY × Ŷ
2 = RY × X1, X2 . . .

2 (9.4)

suggests the very important concept that analyses really focus on latent
variables, and so the structure of the �Y scores must be an important ele-
ment in result interpretation. The equality also suggests another way of
thinking about the �Y scores. The �Y scores are the useful information (i.e.,
SOS) in the predictor variables, discarding all of and only the useless por-
tion of the predictors that are not helpful in predicting Yi. Because the
analysis focuses on the criterion variable, and predicting information
about the amount and origins of differences on Y, predictors are notewor-
thy only to the derivative extent that the predictors in some way explain or
predict the Yi scores, and SOSY.

Practically, the comparisons of these two pairs of r and R coefficients
are important in testing whether the analysis has been properly conducted.
If these two sets of coefficients do not match, we have made an error in
our syntax, and must fix the error before proceeding further.

Next, we can compare in subgroup 1 (n1 = 8) the rY × YHAT11 = 0.7395
(the real RY with X1, X2 in subgroup 1) with the rY × YHAT12 = 0.7391 (the empiri-
cally-estimated “shrunken” R when we use subgroup 2’s weights with
subgroup 1’s data). Of course, if we want to calculate the exact shrinkage,
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we must “square, before you compare” (i.e., shrinkage = 0.73952 –
0.73912 = 0.54686 – 0.54627 = 0.00059). We can perform analogous
comparisons with subgroup 2’s results (i.e., n2 = 7, rY × YHAT11 = 0.9573, and
rY × YHAT12 = 0.9569).

These two comparisons allow judgment about the internal
replicability evidence. When the amount of shrinkage in both subgroups is
small, as is the case here, some evidence is produced that results may be
replicable. This evaluation does not invoke a statistical significance test.

However, there is one complication. A small amount of shrinkage
when the original effect size is small may be devastating, whereas a fairly
large shrinkage in the presence of a huge initial effect size may still be tol-
erable.

A context-free evaluation of replicability can be estimated by comput-
ing an invariance coefficient to quantify the degree to which the �Y scores
are stable across resampling. We compute rYHAT11 × YHAT12 = 0.9995 and
rYHAT22 × YHAT21 = 0.9996. We evaluate these coefficients against the hope
that the invariance coefficients will both approach +1.0. This is our
desired value for the invariance coefficients regardless of the initial effect
size estimate.

However, three precepts must be considered in conducting cross-
validation analyses. First, the subgroup analyses are conducted only to
derive some empirical estimate of result stability, and are not used to esti-
mate either the effect size or from where the effect originates. The full
sample results are always used as the basis for these interpretations,
because the full sample has the largest n and therefore should yield the
most accurate statistics.

Second, our expectations are that (a) the invariance coefficients will
both be large and (b) the invariance coefficients will be consistent across
the double cross-validation. Of course, these evaluations are more rigor-
ous when the dfERROR is larger in both subgroups, because the models are
more falsifiable in such situations.

Third, bear in mind that the number of possible random sample splits
can be quite large, when n is reasonably large. And different sample splits
may yield divergent invariance coefficients for the same data. Thus, cross-
validation methods must be interpreted cautiously. The methods have the
advantage that specialized software is not required (and that performing
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these calculations also heuristically leads to greater understanding of
latent variables and of multiple correlation). And although the methods
are limited, they are considerably more useful than incorrectly NHSST as
some kind of internal replicability evidence.

��� Where Does My Something Originate?

If our answer to our first question, “Do I have anything?” is no, then our
result interpretation obligations have been met, and we are done with
examining the statistical results. Only a fool would ask, “From where does
my nothing originate?” or “Which predictors contribute most to predict-
ing nothing?” Conversely, iff we answer yes, based on whatever combina-
tion of the three facets of evidence we decide to evaluate, then we must
address the question, “From where does my noteworthy effect originate?”

Logically, the b or the β weights might be consulted to address this
second question. After all, the b and the β weights are used to compute the
�Y scores, which are a primary focus of the analysis. And the structure coef-
ficients (rS) provide insight into the nature of the �Y scores, so these coeffi-
cients also seem important in addressing this second question.

As noted in Chapter 8, in Case #1, we can formulate our answer by
evaluating (a) the β weights, or (b) the r between the Yi scores and each
predictor, or (c) the r between the �Y i scores and each predictor (i.e., each
rS). In Case #1, for a given predictor β = rY × X. Also, in a given analysis, the
rS values will always be proportional to the corresponding β weights (and
the corresponding r of Y with a given predictor) because

rS = rX with Y / R (8.14)

The rs between predictors and the Yi scores are simply scaled in a different
metric than the rs between predictors and the �Y i scores, by a factor of R.
And in Case #1, iff R = 1.0, for a given predictor β = rX with Y = rS.

So, in Case #1, only one set of coefficients must be consulted to com-
plete result interpretation. In Cases #2 or #3, two sets of coefficients must
be simultaneously considered.
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Weights

Given that multiplicative weights ought to be consulted in addressing the
origins of detected effects, why are the b weights usually not used as the
basis for interpretation? As explained in Chapter 8, a given b weight is
jointly influenced by (a) the uniquely credited power of X scores in the
given research context to help predict, either directly or indirectly, the Yi

scores, and (b) the standard deviations of the predictor variable in relation
to the SDY.

Because the b weights are a confounded function of these two dynam-
ics, five predictors could all have b weights of +2.5, but each differ in their
predictive contributions in the context of these five predictors. Or the pre-
dictor with the b weight closest to zero may actually be the best predictor
in the context of the predictor variable set.

The β weights are applied to the predictors in z-score form in the stan-
dardized score world. Because the standard deviations of the predictors
have been removed by division when computing the z scores, the β weights
are only influenced by the uniquely credited power of zX scores in the
given research context to help predict, either directly or indirectly, the zY

scores. Thus, in a given research context the β weights can be compared to
each other apples to apples.

However, because

b = β(SDY / SDX) (8.1)

if all the predictors have the same SD, then the set of b and the set of β
weights will be proportional to each other. And when all the measured
variables, including the Y variable, have the same SD, then the b and the β
for given predictors will be equal.

Therefore, b weights can be used in result interpretation when the pre-
dictor variables all have the same SD. For example, in their study Glaser,
Hojat, Veloski, Blacklow, and Goepp (1992) correctly interpreted b
weights rather than β weights, noting that,

As the MCAT subtests are all reported on the same standardized scale
(Mean = 8, SD = 2) one may use the magnitude of the obtained (non-
standardized) regression coefficients (b-values reported in the table) to deter-
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mine the relative importance of the contribution of each predictor in the
regression models. (p. 399)

But equality of predictor SDs occurs rarely, and so β weights are usu-
ally one focus in evaluating result origins. The a and b weights are primar-
ily useful in predictive applications of regression, where we focus on the �Y i

scores in the unstandardized score world (e.g., predicted height of children
in inches once adult) rather than estimates of standardized z-score height,
because z scores are seen as being less friendly by the nonstatisticians usu-
ally involved in predictive situations.

Four precepts should govern the interpretation of the β weights. First,
typically, the signs of the β weights are irrelevant, except that the context
of a given scaling decision must be considered. The signs of the β weights
are usually arbitrary because in the social sciences the scaling direction of
our measures is usually arbitrary. We can score an academic test by count-
ing the number of right answers, or the number of wrong answers. In
either case, we are measuring the same construct.

Second, remember that β are only bivariate correlation coefficients in
Case #1. So do not use the word “correlation” in the context of the β
weights unless you are in Case #1. But in all cases, a β weight indicates the
predicted number of SD units of change in the �Y i scores for 1 standard
deviation of change on a given predictor, given the context of a particular
set of predictors. For example, if the predictor is the number of right
answers on an academic test, and β = +2.5, this means that for 1 SDX of
improvement on scores on the test, the �Y i scores are predicted to improve
by 2.5 SDYs, holding all other scores constant, and in the context of a
given set of predictors.

Third, as repeatedly emphasized in Chapter 8, remember that β
weights are context specific. If you add a single predictor to the model, or
remove a single predictor, all the β weights could fluctuate wildly, unless
you are in Case #1. In Cases #2 and #3, this implies that caution must be
exercised when interpreting the β weights, unless you are somehow certain
the model is correctly specified.

Fourth, use caution when interpreting NHSST for the multiplicative
weights. The pCALCULATED values for a given pair of b and β weights in a
given study are identical. But remember that all tests of statistical signifi-
cance, including the test of H0: b (or β) = 0, are driven by sample size (see
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Ziliak & McCloskey, 2004). This means that an identical set of β weights
may all be statistically significant in one study with a large n, whereas
none are statistically significant in another study with a smaller n.

Structure Coefficients

When b = 0.0, β = 0.0, and vice versa, and the multiplicative weight oblit-
erates the predictor variable. In Case #1, a predictor with β (and b) = 0.0 is
definitively useless. The predictor cannot help, either directly (by predict-
ing variability in the Yi scores) or indirectly (by making one or more other
predictors better predictors of the Yi scores), to explain the SOSY.

But in Case #2, a predictor with a zero β weight might, in fact, be the
single best predictor in the predictor variable set. The predictor may sim-
ply be denied any predictive credit for commonly explained Yi score vari-
ability also explained by other correlated predictors. In such a case, the
predictor would have a large rS

2.
And in Case #3, a predictor might have rS

2 (and rS) of zero, but also a
β weight largest in absolute magnitude among the weights for the predic-
tor set. In such a situation, we know definitively that the predictor is a
suppressor variable.

Across all cases, only when a given predictor has both β = 0.0 and rS =
0.0 is the predictor completely useless, at least in the context of a given set
of predictors. Clearly, as Courville and Thompson (2001) and others (e.g.,
Dunlap & Landis, 1998; Thompson & Borrello, 1985) have argued, “β is
[often] not enough.”

Of course, as noted previously, because the rs between the predictors
and the Yi scores are proportional to the corresponding rs between the pre-
dictors and the �Y i scores, the same interpretations across all three regres-
sion cases would be realized by consulting the rs between the predictors
and the Yi scores. The selection of a supplement to the interpretation of
the β weights across the two choices is entirely stylistic.

Unhappily, empirical studies (e.g., Courville & Thompson, 2001) of
published regression research show that researchers invariably interpret
only β weights. The consequence is gross misinterpretation of results in
much of the literature.

An emphasis on regression structure coefficients is also consistent
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with the emphasis on rS throughout the general linear model, where for
some reason the rSs (unlike the weights) are always called the same thing
(i.e., structure coefficients). For example, structure coefficients are deemed
critical to result interpretation in both exploratory (cf. Gorsuch, 1983,
p. 207; Thompson, 2004) and confirmatory (cf. Graham, Guthrie, &
Thompson, 2003) factor analysis.

The same is true in descriptive discriminant analysis (cf. Huberty,
1994, p. 206) and canonical correlation analysis (cf. Levine, 1977, p. 20).
Thus, Meredith (1964, p. 55) suggested, “If the variables within each set
are moderately intercorrelated the possibility of interpreting the canonical
variates by inspection of [only] the appropriate regression weights [func-
tion coefficients] is practically nil.”

��� Stepwise Methods

In some predictive applications, researchers have access to a large number
of predictor variables, and conduct a specification search (i.e., change the
model specification) by looking for a more parsimonious, smaller subset
of predictors that may be almost as effective as the full set of predictors in
yielding accurate �Y i scores. Some researchers attempt to invoke what are
called stepwise methods for this purpose. Huberty (1994) has noted, “It is
quite common to find the use of ‘stepwise analyses’ reported in empirically
based journal articles” (p. 261).

Stepwise analysis is a forward or a backward progression in which
predictor variables are added or deleted from the model one variable at a
time, based atheoretically on empirical analyses of the sample data. The
forward progression is more commonly encountered than is backward
analysis.

In forward stepwise regression, software first computes the bivariate
r2 values between each predictor variable and the Yi scores. The predictor
with the largest r2 with Y is entered in the first step. The selection by step-
wise of the best single predictor is correct.

In the second step, the remaining predictors are evaluated to deter-
mine which one predictor, when added to the model, will yield the largest
increase in R2, in the context of the first predictor’s presence in the model.
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Thus, a predictor that is very highly correlated with the first-entered pre-
dictor may never be entered into the model, even if this predictor is the
second-best single predictor in the predictor variable set.

In the third step, the remaining predictors are evaluated to determine
which one predictor, when added to the model, will yield the largest
increase in R2, in the context of the first two predictors’ presence in the
model. The process continues by considering the addition of remaining
predictors.

However, next and after all the remaining steps, the removal of previ-
ously-entered predictors is also considered. For example, in the presence
of three predictors, if the first predictor’s explanatory power is present in
the second and third predictors selected, then the first predictor will be
removed from the model.

As programmed in commonly-used statistical packages, the forward
selection procedure continues until the change in R2 from one step versus
the R2 in the immediately previous step is no longer statistically signifi-
cantly different from zero. In any context, including stepwise, we can test
the null that H0: RLARGER

2 = RSMALLER
2 (or H0: RLARGER

2 – RSMALLER
2 = 0) using

the generic equation:

FCALCULATED = [(RLARGER
2 – RSMALLER

2) / (kL – kS)] / (9.5)
[(1 – RLARGER

2) / (n – kL – 1)]

where kL is the number of predictors used to obtain RLARGER
2, and kS is the

number of predictors used to obtain RSMALLER
2. The df are (kL – kS) for the

numerator, and (n – kL – 1) for the denominator.
In stepwise, kL – kS equals 1 at each successive step, so Equation 9.5

simplifies in this application to

FCALCULATED = [RLARGER
2 – RSMALLER

2] / [(1 – RLARGER
2) / (n – 2)] (9.6)

In this application, the degrees of freedom are 1 for the numerator and
(n – kL – 1) for the denominator. Of course, this means that 100 research-
ers evaluating the same ∆R2 (i.e., RLARGER

2 – RSMALLER
2) for the same number

of steps, but with 100 different sample sizes, will each obtain different
pCALCULATED values, and some may make different decisions, even at a fixed
α about when to discontinue the stepwise analysis.
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Three Problems

There are three primary problems with stepwise analyses (Thompson,
1995). Various scholars have noted these problems (e.g., Huberty, 1989;
Snyder, 1991; Thompson, 2001) and suggested that stepwise methods
should never be used. Indeed, one article in this venue was entitled “Why
Won’t Stepwise Methods Die?” (Thompson, 1989b).

Wrong Degrees of Freedom

Commonly-used statistical packages incorrectly compute the FCALCULATED

and pCALCULATED used to test the final R2 evaluated at the conclusion of the
stepwise analysis, because the wrong degrees of freedom are used. The
dfTOTAL is correctly computed as n – 1. However, the dfREGRESSION is com-
puted as the number of variables that stepwise has entered, and the
dfRESIDUAL is computed as dfTOTAL minus this dfREGRESSION. Instead, the
dfREGRESSION should be the number of predictor variables in the study.

The dfREGRESSION are the coins we spend to ask questions of our data.
We can enter into a model no more than dfTOTAL predictor variables (and
should enter considerably fewer predictors, so that dfRESIDUAL ≠ 0, and the
model remains falsifiable).

Software should charge us for 1 degree of freedom for every predictor
“tasted,” regardless of how many predictors are ultimately retained in the
analysis. As Thompson (2001) observed,

This is bad behavior. The movie I show my students to teach them that this is
bad behavior is “Animal House” when John Belushi is in the student cafete-
ria. He tastes all the entries on the buffet line, but doesn’t pay for the items he
tasted and put back (or stuffed in his pockets). My students, who include
some serious cafeteria experts, assure me that this behavior would not be tol-
erated at many of your finer cafeterias. Nor should such [bad] behavior be
tolerated in statistics. (p. 87)

Note that if 5 out of 50 predictors were selected randomly, or based on
prior findings, or theory, and all 50 predictors were not tasted by stepwise,
then dfREGRESSION = 5 would indeed be entirely correct.

Table 9.6 illustrates the impacts for a hypothetical situation involving
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n = 126, 5 steps of forward stepwise with a pool of 50 predictor variables,
and an R2 of 10.00%. For the incorrect degrees of freedom, pCALCULATED is
0.025, and so the result is statistically significant at α = 0.05. But when the
correct degrees of freedom are computed, FCALCULATED is less than 1 and so
cannot be statistically significant even at infinite degrees of freedom. Here,
for the correct degrees of freedom, the Excel =FDIST statistical function
calculates that pCALCULATED = 1.00, and the result is not statistically signifi-
cant.

Of course, this problem is not inherent in stepwise methods, but
instead is a flaw in the statistical software implementations of these meth-
ods. The consequence of using a deflated dfREGRESSION along with an inflated
dfRESIDUAL is typically a “double whammy” inflation of FCALCULATED and a
corresponding “double whammy” deflation of pCALCULATED. Thus, Cliff
(1987, p. 185) noted that “most computer programs for [stepwise] multi-
ple regression are positively satanic in their temptations toward Type I
errors.”

The problem may be less acute when sample size is (a) extraordinarily
large and the number of predictor variables is very small or (b) the final R2

is small. In these cases, the differences in the correct and incorrect
pCALCULATED values will not be as large, as could be seen by modeling varia-
tions on the Table 9.6 results for various ns, numbers of predictors, and
effect sizes. Nevertheless, in all cases, the computer packages use the incor-
rect degrees of freedom, and the only question is how wrong the incorrect
results are.
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TABLE 9.6. Stepwise NHSST for Hypothetical Example

Analysis/source SOS df MS FCALCULATED pCALCULATED R2

Incorrect
Regression 10.0 5 2.00 2.667 0.025 10.00%
Residual 90.0 120 0.75
Total 100.0 125 0.80

Correct
Regression 10.0 50 0.20 0.167 1.000 10.00%
Residual 90.0 75 1.20
Total 100.0 125 0.80



Capitalization on Sampling Error

All samples include variance that mirrors true variance in the population,
as well as idiosyncratic variance unique to the sample (i.e., sampling error
variance). Unfortunately, in stepwise even a very small amount of sam-
pling error variance can result in an incorrect predictor selection decision
(i.e., a decision that would not occur if stepwise for the same variables was
performed in the population).

Furthermore, stepwise makes a linear sequence of entry decisions. A
mistake at any step impacts and potentially compromises all subsequent
entry decisions. Because in stepwise an infinitesimal competitive advan-
tage for entering a predictor will result in that variable’s selection, and
that infinitesimal advantage may be due to sampling error, and also preju-
dice subsequent decisions, “a large proportion of the published results
using this method probably present conclusions that are not supported by
the data” (Cliff, 1987, pp. 120–121).

For example, if for an analysis involving 50 predictors, the best
single predictor rY × X

2 = 10.0001%, and for a second predictor
rY × X

2 = 10.0000%, the first predictor will be entered before the second
variable, and the second variable may never get entered. Of course, this
problem is partly a function of collinearity, and is less severe as the
research approaches Case #1. On the other hand, in Case #1, the step-
wise predictor variable entry order will exactly correspond to the
squared correlations of the predictors with the Yi scores, so stepwise in
Case #1 represents an uninteresting situation in which no researcher
would use stepwise.

Freedman (1983) conducted a Monte Carlo simulation study demon-
strating that even if we sample from a population in which the predictors
each have no relationship with Y, a large sample R2 will result. He
reported:

To focus on an extreme case, suppose that in fact there is no relationship
between the dependent variable and the explanatory variables. Even so, if
there are many explanatory variables, the R2 [from a stepwise analysis] will
be high. . . . This is demonstrated [here] by simulation and by asymptotic cal-
culation. (p. 152)
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R2 Not Optimized

Some researchers erroneously believe that stepwise methods identify the
set of predictors of size k that will yield the largest R2 given the use of k
predictors with the dataset (Huberty, 1989, p. 45). To the contrary, (a)
another combination of k predictors may yield a larger R2 than the R2 for
the k predictors picked by stepwise, and furthermore (b) the best set of k
predictors might not include any of the k predictors selected by stepwise
(see Thompson, 1995)!

Equating stepwise with finding the optimal set of k predictors is illogi-
cal, because stepwise and finding the best set of k predictors involve two
different questions. In an analogy to selecting five players on a basketball
team, stepwise sequentially asks, “In a given selection, which one player
should I add to the team, given the previous players selected?”

Conversely, the correct selection method would ask, “For all possible
teams of five players, which team plays the best?” The best team of five
may not be the team identified via a sequence of selections, because asking
a question about team quality does not raise any issues of incremental
selection, and incremental selection issues are completely irrelevant to
selecting the best team.

The only way to select the best possible team of basketball players
from a pool of 50 players is to evaluate all possible teams of 5. The best
team might not include the players picked in a stepwise algorithm. And
the best team of 5 might not even include the single best player, when the
best player does not play well with others. By the same token, the only
time that stepwise picks the best predictor variable set of size k is in Case
#1, which is not a situation in which stepwise is likely to be used, because
here in the presence of all the rY × X

2 values, no value is added by conduct-
ing the stepwise analysis.

Alternative Models

Two alternative models to stepwise, unlike stepwise, may be very useful in
research. The two models involve hierarchical and all-possible-subsets
analyses, respectively.

However, it is important to realize that regardless of the model (e.g.,
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stepwise, hierarchical, all-possible subsets) used, once a given set of k pre-
dictors is identified, the β weights and the structure coefficients for these
predictors will be the same no matter how the k predictors are identified.
So, with a given set of k = 5 predictors, if β1 = –2.80, and rS for the first
predictor is –0.75, β1 will equal –2.80 and rS will equal –0.75 if stepwise
was used, or the five predictors were selected using darts, or tarot cards, or
all-possible-subsets analyses, or any method.

Hierarchical Entry

Hierarchical predictor variable entry involves entering predictors in prede-
termined blocks (e.g., using a series of ENTER subcommands within the
SPSS REGRESSION procedure) based on theory or previous research. Thus,
the data are not consulted in selecting the blocks or their order entries.

For example, if a researcher had variables measured at birth (i.e., X1,
X2, and X3), variables measured in first grade (e.g., F1, and F2), and vari-
ables measured in sixth grade (e.g., S1, S2, and S3), the variables might
logically be entered in three blocks reflecting the chronology of measure-
ment. This could be accomplished in SPSS by invoking the subcommand
syntax within REGRESSION:

ENTER x1 x2 x3/ENTER f1 f2/enter s1 s2 s3

At each block of variable entry, an R2 will be printed. For a given
dataset with a fixed n, the uncorrected R2 can never become smaller as
more measured predictors are used. Of course, the uncorrected R2 could
theoretically remain unchanged as more predictors are added, and the cor-
rected R2 could get smaller. Also, if desired, the statistical significance of
the differences in the sequential R2 values could be evaluated with Equa-
tion 9.5.

Hierarchical entry is theory-driven, and can be used to address inter-
esting theoretical propositions, such as developmental models. For exam-
ple, in the illustrative situation described here, we may use these models to
test whether education after first grade has any impacts beyond those pres-
ent in first grade.
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All-Possible-Subsets Analysis

In predictive applications, the researcher may seek a more parsimonious
(smaller) set of predictors that may still yield an acceptable R2, or even an
R2 that is roughly comparable to the effect size obtained from using the
full pool of predictors. However, as suggested previously, stepwise is not
suitable for this (or any other) purpose.

The correct selection method begins by computing the R2 for each and
every combination of predictors for each and every variable set size. The
computations sound daunting but, actually, can be painlessly performed
by some software in only moments.

Figure 9.2 presents a line plot of the maximum R2 values for a given
number of k predictors. This plot can be consulted to inform the
researcher’s subjective judgment regarding the optimal number of predic-
tors to retain. In this example, the plot seems to level off after the predic-
tor variable set size is k = 5 (R2 = 57.1% with k = 5, versus R2 = 58.1%
with k = 6).

If the ~57.1% effect size is deemed sufficient, given the researcher’s
predictive application, the focus then turns to which five predictors should
be retained for future use. Thoughtful researchers will look at several R2

values for k = 5, and then thoughtfully select the predictor variable set at
k = 5 with variables that can be most easily or most cheaply measured. A
k = 5 variable set with a slightly less-than-optimal effect size might be pre-
ferred for practical reasons.

A variant on this all-possible-subsets analysis would instead plot
“adjusted R2” values. This alternative will be most appealing when sam-
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FIGURE 9.2. Line plot of successive R2 values



pling error variance is likely to be larger, as when sample size is relatively
small.

��� Invoking Some Alternative Models

Various interesting alternative or complementary regression models may
be helpful in some research situations. Four particularly noteworthy mod-
els are considered here: (a) commonality analysis, (b) path analysis, (c)
curvilinear regression invoking predictors taken to various exponential
powers to model curvilinear relationships, and (d) testing interaction
effects.

Commonality Analysis

Commonality analysis (Beaton, 1973; Mood, 1969; Seibold & McPhee,
1979; Thompson, 1985) can be used to decompose either the R2 or the
SOSEXPLAINED into constituent, nonoverlapping parts that involve the
unique and the common explanatory powers of the predictors (or sets of
predictors) in all their possible combinations. For example, in the context
of two predictors (or two sets of predictors, each involving one or more
variables), we could ask, (a) How much explanatory power is unique to
the first predictor (or predictor set)? (b) How much explanatory power is
unique to the second predictor (or predictor set)? and (c) How much
explanatory power is common to both predictors (or predictor sets) and
could be derived from either predictor (or predictor set)?

Rowell (1996) presented an accessible treatment of these methods.
Table 9.7 presents the formulas that can be used to derive these estimates
for either two, three, or four predictor variables (or predictor variable
sets). Formulas for more predictors can be found elsewhere (e.g., Rowell,
1996).

Commonality analysis is only of potential interest in either Case #2 or
Case #3. In Case #1, because all the predictor variables are uncorrelated,
(a) there is no common explanatory power of the predictors acting in con-
cert in sets of two or more, and (b) all the unique explanatory power of a
given predictor is quantified by the r2 of the given predictor with the Yi

scores.
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To make this discussion concrete, let’s consider the prediction of
library users’ ratings (n = 69,358) of library service quality using the
LibQUAL+TM protocol (Thompson, Cook, & Heath, 2003a, 2003b), pre-
dicted by (a) global library satisfaction scores, (b) global scores on aca-
demic outcomes facilitated by the library, and (c) frequency of library use
scores. The necessary results to apply the Table 9.7 equations are pre-
sented in Table 9.8.

The Table 9.8 results can easily be plugged into a spreadsheet pro-
gram to produce the output reported in Table 9.9. Note that the unique
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TABLE 9.7. Formulas for Unique
and Commonality Components of Shared Variance



and the common explanatory partitions of the R2 (i.e., 58.698%) for a
given variable sum together to equal the r2 of a given predictor with the Yi

scores (e.g., UniqueSATISFACTION + CommonSATISFACTION with OUTCOMES and USE =
rSATISFACTION with LibQUAL+(TM) = 19.409% + 37.587% = 56.996%).

It is also noteworthy that the sum of all seven nonoverlapping parti-
tions of R2 equals the R2 of the three predictors with the LibQUAL+TM

scores. Thus, 19.409% + 1.684% + 0.032% + 37.488% + –0.023% +
–0.014% + 0.122% = 58.698%. This merely reiterates the truism that
commonality here is being used to partition the R2 into (seven) constitu-
ent, nonoverlapping parts.

Some comment on the negative variance partitions is necessary.
Clearly, negative variances are troubling because, as area-world statistics,
variances theoretically have a minimum value of zero. Traditionally, near-
zero values in commonality analyses are treated as zeroes. If some negative
values are large, the possibilities of model misspecification, or of suppres-
sor effects, are suggested, and the results would be deemed not reasonable.

Commonality analysis can also be used to partition the SOSEXPLAINED

(here 56,983.94). The analysis is performed by multiplying the Table 9.9
results by the SOSEXPLAINED of 56,983.94, again using a spreadsheet. The
result is presented in Table 9.10.

In the present example, the commonality analysis can be used to help
us understand what the LibQUAL+TM scores measure. Several conclusions
are suggested.

First, the LibQUAL+TM scores appear insensitive to frequency of
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TABLE 9.8. Coefficients Required for the Table 9.7 Computations

Predictors r2 or R2

Satisfaction 56.996%
Outcomes 39.280%
Use 0.117%
Satisfaction, Outcomes 58.666%
Satisfaction, Use 57.014%
Outcomes, Use 39.289%
Satisfaction, Outcomes, Use 58.698%



library use. Frequency of library use either alone (UniqueUSE = 0.032%) or
in concert with either or both of the other predictors (CommonUSE =
0.085%) contributes little to defining R2 = 56.996%.

Second, academic outcomes explain about two-thirds of the R2 =
58.698% (i.e., r2

LibQUAL+(TM) with OUTCOMES = 39.280% / 58.698% = 0.669), but
given that most of this overlaps with the other two predictors (i.e.,
CommonOUTCOMES = 37.596% / 39.280% = 0.957), the outcomes scores
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TABLE 9.9. Unique and Common Components of Shared Variance (R2)

Predictors

Predictors/partitions Satisfaction Outcomes Use

Satisfaction 19.409%
Outcomes 1.684%
Use 0.032%
Satisfaction, Outcomes 37.488% 37.488%
Satisfaction, Use –0.023% –0.023%
Outcomes, Use –0.014% –0.014%
Satisfaction, Outcomes, Use 0.122% 0.122% 0.122%

Unique 19.409% 1.684% 0.032%
Common 37.587% 37.596% 0.085%
Total 56.996% 39.280% 0.117%

TABLE 9.10. Sum-of-Squares (SOS) Explained by Predictor Sets

Predictors

Predictors Satisfaction Outcomes Use Cumulation

Satisfaction 18842.23 18842.23
Outcomes 1634.82 1634.82
Use 31.07 31.07
Satisfaction, Outcomes 36393.30 36393.30 36393.30
Satisfaction, Use –22.33 –22.33 –22.33
Outcomes, Use –13.59 –13.59 –13.59
Satisfaction, Outcomes, Use 118.44 118.44 118.44 118.44

Total 56983.94



contribute little to predicting the LibQUAL+TM scores in the presence of
the other scores.

The satisfaction scores uniquely contribute about one-third of the
R2 = 58.698% (i.e., 19.409% / 58.698% = 0.331). And the satisfaction
and outcomes scores as a predictor pair have in common the capacity to
explain about two-thirds of the R2 = 58.698% (i.e., 37.488% / 58.698% =
0.639). The remaining five variance partitions are all quite small, the larg-
est being only UniqueOUTCOMES = 1.684%. Clearly, in the context of this
predictor variable set, the LibQUAL+TM scores must be considered basi-
cally a global measure of patron satisfaction with libraries.

Path Analysis

Path analysis was conceptualized by Sewall Wright (1921, 1934) as a way
of studying the direct and indirect impacts of measured variables on other
measured variables considered to be effects. A brief treatment here is war-
ranted for three reasons. First, like commonality analysis, path analysis
can be conceptualized as another way to decompose correlations. This
process is fundamental to all data analysis, and so is important conceptu-
ally to an understanding of what statistical analyses do. Second, the meth-
ods can be substantively important in their own right.

Third, path analysis, when married with a multivariate technique
called confirmatory factor analysis (see Thompson, 2004), creates a
method called structural equation modeling (SEM). SEM is a very power-
ful multivariate analysis, which is beyond the scope of the present book
(see Thompson, 2000b, for an introductory explanation). Nevertheless,
some understanding of path analysis will facilitate subsequent understand-
ing of SEM, and path analysis is an important analytic method in its own
right.

The purpose of this brief discussion is not to make you an expert on
path analysis. The purpose is only to make you aware of additional ana-
lytic possibilities, expose you to a few key concepts, and perhaps excite
you to do some further reading.

To make this discussion concrete, consider the hypothetical data pre-
sented in Table 9.11, which represent a variation on an example provided
by Kerlinger and Pedhazur (1973, pp. 305–326). The example involves
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prediction of GPA with socio-economic status (SES), psychological need
for achievement (nAch), and IQ scores (IQ).

The path model we will test is presented in Figure 9.3. In a real analy-
sis, a critical feature of the investigation would involve laying out an
empirical and/or theoretical justification for the model. Also, real analyses
usually should test multiple rival models, because the fit of a preferred
model to our data is more persuasive when the preferred model fits better
than plausible rival models (Thompson, 2000b). Our model has been
drawn under the assumptions that (a) all relationships are linear, (b) all
causal flows are one way (i.e., there are no two variables linked by recip-
rocal causation, or in other words, no two variables are linked by a pair of
one-headed arrows going in opposite directions), and (c) the measured
variables are intervally-scaled.

We will analyze the measured variables in their z-score forms, and
thus be estimating β weights, so that the weights can be compared with
each other apples-to-apples. In a path analysis diagram involving mea-
sured variables in their z-score forms, two-headed arrows represent corre-
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TABLE 9.11. Pearson r Matrix for Predicting GPA

Variable SES nAch IQ GPA

SES 1.000 0.250 0.510 0.351
nAch 0.250 1.000 0.190 0.590
IQ 0.510 0.190 1.000 0.510
GPA 0.351 0.590 0.510 1.000

FIGURE 9.3. Path analysis model



lation coefficients. One-headed arrows involve estimates of path
coefficients. We require an estimate of the coefficient implied by each of
the six arrows in Figure 9.3.

Path Coefficient Estimation

The coefficient for the rSES × nAch two-headed arrow can be derived by insert-
ing into the diagram the appropriate entry from Table 9.11 (i.e., r = 0.250
= p1). To find the path coefficients for predicting IQ from SES, and IQ
from nAch, we conduct a regression predicting IQ with only SES and
nACH. The resulting β weights provide these two path coefficients.

We can compute these β weights using Equations 8.12 and 8.13. For
SES predicting IQ within this model, we have

βSES = [rSES × IQ – {(rnAch × IQ)(rSES × nAch)}] / [1.0 – rSES × nAch
2]

[0.510 – {(0.190)(0.250)}] / [1.000 – 0.2502]
[0.510 – {(0.190)(0.250)}] / [1.000 – 0.063]

[0.510 – {(0.190)(0.250)}] / 0.938
[0.510 – 0.048] / 0.938

0.463 / 0.938
= 0.493

Thus, p2 = βSES = 0.493.
For nAch predicting IQ within this model, we have

βnAch = [rnAch × IQ – {(rSES × IQ)(rSES × nAch)}] / [1.0 – rSES × nAch
2]

[0.190 – {(0.510)(0.250)}] / [1.000 – 0.2502]
[0.190 – {(0.510)(0.250)}] / [1.000 – 0.063]

[0.190 – {(0.510)(0.250)}] / 0.938
[0.190 – 0.128] / 0.938

0.063 / 0.938
= 0.067

Thus, p3 = βnAch = 0.067.
Finally, to compute the p4, p5, and p6 coefficients, we perform a regres-

sion predicting GPA with SES, nAch, and IQ. We could do this simply by
running the necessary regression in SPSS or another package. Alterna-
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tively, we could obtain the same result by requiring SPSS to do the neces-
sary calculations step by step, using the following syntax. In either case,
when predicting GPA, we would obtain p4 = βSES = 0.018, p5 = βIQ = 0.404,
and p6 = βnAch = 0.509.

Partitioning Direct and Indirect Effects

One way to interpret our results is by conceptualizing the model as pre-
dicting changes in measured variables as a cumulation of direct and indi-
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rect effects from changes in predictor variable scores. For our model, we
have

zSES = eSES,
znAch = enAch,

zIQ = p2[zSES] + p3[znAch] + eIQ,
zGPA = p4[zSES] + p6[znAch] + p2[zSES][p5] + p3[znAch][p5] + eGPA

where es are the error terms resulting whenever our model does not per-
fectly fit our data.

The model can be used to estimate changes in an outcome associated
with change in a predictor by a given number of standard deviation units,
holding other measured variables constant. For example, if a given per-
son’s nAch increased by 1 SD, the predicted change in IQ would be solely
due to direct effects of the change in nAch, and would be

zIQ = p2[zSES] + p3[znAch]

or

zIQ = 0.493[0] + 0.067[1]

or an increase of 0.067.
However, if a given person’s nAch increased by 1 SD, the predicted

change in GPA would be impacted both directly and indirectly by this
change. The predicted change in GPA would be

zGPA = p4[zSES] + p6[znAch] + p2[zSES][p5] + p3[znAch][p5]

or

zGPA = 0.018[0] + 0.509[1] + 0.493[0][0.404] + 0.067[1][0.404]

or an increase of 0.509 (i.e., 0.509[1]) from the direct effects of the change
in nAch, as well as an additional increase of 0.027 (i.e., 0.067[1][0.404])
from the indirect effects of the change in nAch working through IQ.
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Partitioning r2s and Evaluating Model Fit

The path coefficients can also be used to estimate the bivariate rs among
the measured variables, or can be viewed as a decomposition of the esti-
mated bivariate rs among the measured variables (see Loehlin, 2004,
Ch. 1). This insight yields the conceptual understanding that the path
model is attempting to yield a matrix of estimated correlations that will
approximate the actual values in Table 9.11. Beyond the heuristic value of
comparing estimated with actual r values, to emphasize that the model is
an alternative representation of the correlations, from a practical stand-
point we compare the reproduced or estimated correlations with our
actual correlations to help evaluate whether our model fits our data, and
the model seems reasonable. Here we can decompose the six unique corre-
lation coefficients presented in Table 9.11.

First, given our coefficients, the rGPA × SES is estimated as

rGPA × SES = p4 + [(p6)(rSES × nACH)] + [(p5)(rIQ × SES)]
0.017579 + [(0.508775)(0.250)] + [(0.404368)(0.510)]

0.017579 + 0.127193 + [(0.404368)(0.510)]
0.017579 + 0.127193 + 0.206227

0.017579 + 0.333421
rGPA × SES = 0.351000

Alternatively, we can decompose the correlation using only the path coeffi-
cients from the path analysis. Now we have

rGPA × SES = [(p1)(p6)] + [(p1)(p3)(p5)] + [(p2)(p5)] + p4

[(0.250)(0.508775)] + [(0.250)(0.066667)(0.404368)] +
[(0.493333)(0.404368) + 0.017579

0.127194 + 0.006740 + 0.199488 + 0.017579
rGPA × SES = 0.351000

Second, rGPA × nACH is estimated as

rGPA × nACH = [(p4)(rSES × nACH)] + p6 + [(p5)(rIQ × nACH)]
[(0.017579)(0.250)] + 0.508775 + [(0.404368)(0.190)]

0.004394 + 0.508775 + [(0.404368)(0.19)]
0.004394 + 0.508775 + 0.076829

0.004394 + 0.585604
rGPA × nACH = 0.589999
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Alternatively, using only the path coefficients, we have

rGPA × nACH = [(p1)(p4)] + [(p1)(p2)(p5)] + [(p3)(p5)] + p6

[(0.250)(0.017579)] + [(0.250)(0.493333)(0.404368)] +
[(0.066667)(0.404368)] + 0.508775

0.004395 + 0.049872 + 0.026958 + 0.508775
rGPA × nACH = 0.590000

Third, rGPA × IQ can be decomposed as

rGPA × IQ = [(p4)(rIQ × SES)] + [(p6)(rIQ × nACH)] + p5

[(0.017579)(0.510)] + [(0.508775)(0.190)] + 0.404368
0.008965 + [(0.508775)(0.190)] + 0.404368

0.008965 + 0.096667 + 0.404368
0.008965 + 0.501035
rGPA × IQ = 0.510000

Using only the path coefficients from the path model, we have

rGPA × IQ = [(p2)(p1)(p6)] + [(p3)(p6)] + [(p2)(p4)] + p5

[(0.493333)(0.250)(0.508775)] + [(0.066667)(0.508775)] +
[(0.493333)(0.017579)] + 0.404368

0.062749 + 0.033919 + 0.008672 + 0.404368
rGPA × IQ = 0.509708

Fourth, rIQ × SES can be decomposed as

rIQ × SES = p2 + [(p3)(rSES × nACH)]
0.493333 + [(0.066667)(0.250)]

0.493333 + 0.016666
rIQ × SES = 0.509999

Using only path coefficients yields:

rIQ × SES = [(p1)(p3)] + p2

[(0.250)(0.066667)] + 0.493333
0.016667 + 0.493333

rIQ × SES = 0.510000
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Fifth, we can compute rIQ × nACH as

rIQ × nACH = [(p2)(rSES × nACH)] + p3

[(0.493333)(0.250)] + 0.066667
0.123333 + 0.066667
rIQ × nACH = 0.190000

Using only path coefficients, we have

rIQ × nACH = [(p1)(p2)] + p3

[(0.250)(0.493333)] + 0.066667
0.123333 + 0.066667
rIQ × nACH = 0.190000

Sixth, we can estimate rnACH × SES. However, in our path model involving
measured variables in z-score form, this path is a correlation, represented
in our path diagram as a two-headed arrow. Thus, rnACH × SES = p1 = 0.250.

Note that our six estimated Pearson r values exactly match the actual
values reported in Table 9.11. This means that our model perfectly fit our
data. This will not typically occur with real path analysis problems! The
matches here are an artifact of the fact that our model required estimation
of six path coefficients, and we had a correlation matrix with six unique
entries.

Think about the recomposition of the correlations using the path coef-
ficients. Logically, if we had fewer path coefficients, then the path coeffi-
cient recompositions of the correlations might not (and probably would
not) exactly reproduce the correlations. So, if our path model had esti-
mated fewer than six path coefficients, our path model doubtless would
not have perfectly fit our data (see Thompson, 2000b). But in such situa-
tions the near fit of a model to data is more persuasive, because models
estimating fewer parameters are “falsifiable,” and do not fit data merely
because we are estimating a number of path coefficients equal to the num-
ber of unique entries in the correlation matrix. For an example of a related
falsifiable path model, see Kerlinger and Pedhazur (1973). In actual
research, only falsifiable models that do not inherently fit the data, but
nevertheless do so reasonably well, are of real interest.
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Regression Invoking Exponentiated Predictors

Both Chapters 8 and 9 have emphasized that the matrix of all possible
pairwise Pearson product–moment correlation coefficients (rs) is the basis
for the remaining multiple regression computations, including the compu-
tation of R2. However, as emphasized in Chapter 5, the Pearson r asks two
questions, and is sensitive only to linear patterns of relationship.

An important implication is that because R2 is a function of statistics
measuring only linear relationship, R2 is itself also only a measure of linear
relationship. How can classical multiple regression procedures be modi-
fied so that the analysis is sensitive to curvilinear relationships of the pre-
dictors with the Yi scores?

The required analyses can be performed quite simply by taking some
or all of the predictor variables to various exponential (or polynomial)
powers. Table 9.12 presents a hypothetical dataset (n = 9) that can be used
to illustrate the calculations.

As reported in Table 9.13, the linear relationship between the Xi and
the Yi scores is trivially small (i.e., r2 = 0.07612 = 0.6%) and not statisti-
cally significant (pCALCULATED = 0.846), at least at commonly used values of
α (e.g., 0.05, 0.01). When we square the predictor variable to create Xi

2,
that variable also has a small relationship with the Yi scores (i.e., r2 =
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TABLE 9.12. Hypothetical Data for Polynomial
Prediction

Predictors

Y X X2

1 1 1
4 2 4
6 3 9
7 4 16
8 5 25
7 6 36
6 7 49
4 8 64
2 9 81



–0.14482 = 2.1%) and is not statistically significant (pCALCULATED = 0.710)
as a single predictor.

However, when we use both the Xi and the Xi
2 scores to predict Y, the

R2 = 98.8% (FCALCULATED = 259.59; df = 2, 6; pCALCULATED < 0.0001). Of
course, one very important implication of these results is that we cannot
anticipate the predictive power of a system of predictors merely by
examining only each bivariate r of the predictors with the Yi scores. The
comparison is apples-to-oranges, because the regression analyses simulta-
neously consider all the relationships among all the measured variables.

We can visually see the curvilinear dynamics within the data if we run
the SPSS procedure GRAPH, INTERACTIVE, and SCATTERGRAM and request
the plotting of the regression line within the scatterplot. The regression
line is quite flat, and the a weight approximates the MY, reflecting the fact
that the rY with X

2 is only 0.07612 = 0.6%. However, the curvilinear relation-
ship between the two measured variables is obvious in the scatterplot.

For the full regression model, a = –2.357, bX = 3.898, and bX SQUARED =
–0.383. We can use this equation to estimate the �Y i scores for the nine cases.
However, the regression equation can be used to estimate �Y i scores corre-
sponding to all conceivable values of Xi, subject to the constraint that we
believe these other cases are reasonably comparable to our original sample.
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TABLE 9.13. Computer Output
of Pearson r Correlation Matrix for the Table 9.11 Data

Predictors

Variables Y X X2

Y 1.0000
p = .

X 0.0761 1.0000
p = 0.846 p = .

X2 –0.1448 0.9753 1.0000
p = 0.710 p = 0.000 p = .

Note. Even though computer packages report “p = 0.000,” because pCALCULATED can never be
exactly zero, convert such values to “p < 0.001” in your articles or dissertation. Alternatively,
use the appropriate Excel spreadsheet function to report the exact p value.



Figure 9.4 uses the equation with a range of values of Xi, including
scores not in the original dataset, to estimate the corresponding �Y i scores.
The regression line, or now the regression curve or parabola, consists of
infinitely many �Y i scores. Nevertheless, Figure 9.4 makes obvious that we
are no longer estimating linear relationships once we take some or all of
our predictor variables to exponential powers.

When we square predictors, we are estimating a regression curve or
parabola, as we did in Figure 9.4. If we cubed one of more predictors, we
would be estimating a regression curve with two possible bends. If we
took predictors to the fourth power, we would be estimating a regression
curve with three possible bends.

Researchers rarely elect to use exponential powers higher than three.
And often using the original predictors and the predictors squared pro-
vides a reasonable fit in many datasets involving curvilinear dynamics.

If the R2 is 100% when the predictors are not taken to exponential
powers (i.e., the implicit exponent of 1 is used for each predictor), then
curvilinear relationship is excluded as a possibility. Linear relationships
perfectly fit the data, and curvilinear relationships are not present. Con-
versely, if R2 is zero or near-zero, as in the present example, it is possible
that curvilinear relationship is also not present in large measure or, at the
other extreme, may be present in huge amounts.
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FIGURE 9.4. Plot of �Y parabola and original (n = 9) score pairs



Testing Interaction Effects

Fairly early in their history, social scientists shifted their focus from an
effort to discover interventions or predictions that work well for everyone,
to efforts to discover interventions or predictions that work well or best
for some people, but may not work well or best for other people. A major
impetus for this shift was provided by Cronbach (1957, also see 1975) in
his American Psychological Association (APA) presidential address.

Interaction effects quantify the degree to which predictors or indepen-
dent variables perform differently in the presence of other predictors,
thereby creating unique additional effects through their joint functioning.
Obviously, the investigation of interaction effects requires the use of more
than one predictor variable. Interaction can be studied using predictors in
variable pairs, variable triplets, and so forth.

Interaction is a difficult statistical concept to master. A major
counterintuitive aspect of interaction is that (a) interaction effects are in-
dependent of the effects of the measured variables used to study the inter-
action, and (b) knowledge of effects for predictors acting alone cannot be
used to test or quantify interaction effects.

Interactions in medicine provide useful metaphors for better under-
standing interaction dynamics. As you may be aware, some antibiotics
lose effectiveness in the presence of milk, and some other drugs lose effec-
tiveness in the presence of such foods as spinach.

Some interactions are harmful. For example, in recent years two drugs
colloquially labeled “fen” and “phen” were combined into a single cock-
tail to treat obesity. There was considerable evidence that each drug taken
alone was reasonably safe. But, when taken together, the cocktail induced
an increased risk of serious heart damage. Again, the only way to confirm
interaction effects is to use the variables together in a single study.

Drug–alcohol interactions are another example. For most of us, tak-
ing or not taking an over-the-counter antihistamine does not seriously
compromise our abilities to drive or to think. Similarly, drinking or not
drinking one or two glasses of cabernet sauvignon does not seriously com-
promise our abilities to drive or to think. But the combination of one anti-
histamine pill and two glasses of wine for many of us may be another
matter entirely.
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Three Common Measured Variable Transformations

For various reasons, in some situations researchers elect to convert their
measured variables into new forms. Three combinations are seen most
often.

First, researchers may compute centered/standardized scores. A com-
mon form of centered/standardized scores involves the z scores (Mz = 0.0;
SD = SD2 = 1.0) discussed in Chapter 3. These z scores have several useful
features. For example, if I know my test grade was zi = +1.00, because z
scores are themselves deviation scores (and thus symbolized with a lower-
case letter), I know that my score was 1 SD higher than the mean, regard-
less of the shape of the distribution. And if I know that the scores were
normally distributed, from the discussion in Chapter 4 I know that I
scored higher than roughly 84% of my classmates.

The use of z scores in computing grade averages has the useful feature
of adjusting for the differences in test difficulties across the semester. And,
perversely, presenting students their grades by announcing only z scores
inevitably ensures that students at least understand z scores.

The z scores can also be used to compute other centered/standardized
scores (e.g., IQ scores: M = 100.0, SD = 15.0; McCall’s T scores: M =
50.0, SD = 10.0; or GRE scores: M = 500.0, SD = 100.0). To compute
these centered/standardized scores, we do two steps of calculations.

First, we multiply the z scores by the desired standard deviation (e.g.,
SD = 100). The mean of the new scores remains 0.0, because the old mean
of 0.0 times the multiplicative constant of 100.0 yields a mean of the new
scores that is still zero. But the scores now have a new SD of 100.0,
because 1.0 × 100.0 = 100.0. Second, we add to each new score the
desired mean (e.g., 500.0). This yields centered/standardized scores with
M = 500.0 and SD = 100.0.

A second type of transformed scores involves noncentered/standard-
ized scores. These can be computed in various ways. One way is to convert
the scores into z scores and then add the original mean. This yields a set of
scores with SD = SD2 = 1.0, but a mean equal to the original mean.

A third alternative involves centered/nonstandardized scores. We sim-
ply subtract the original mean from each score (not z scores). We are left
with scores with a new mean of zero, but their original, unaltered SD.
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Centered/nonstandardized scores can be used for various purposes.
Sometimes the predictor variables in regression are centered, especially if
a score of zero on each predictor is not psychologically meaningful. For
example, an IQ of zero for a live person seems implausible, but center-
ing the IQ scores at their mean is reasonable, because average IQ has
meaning.

Conversely, drinking zero glasses of wine and taking zero antihista-
mine pills both represent plausible occurrences involving the possibility
that participants have had, or might have had, no wine or drugs. We
would usually not center these two variables.

One benefit of centering in the regression context is that centering
makes the a weight statistically more meaningful (not just used to estimate
the �Y i scores). The a weight can be thought of as the predicted value of the
�Y i scores when the predictors all equal scores of zero. For centered predic-
tors, then, once the predictors are centered so that values of zero equal the
predictor means, the a weight now reflects the predicted outcome score
when all the predictor variables are at their means. And the a weight = MY

= MŶ.
Another useful function of centered/nonstandardized scores in regres-

sion is to model interaction effects (see Aiken & West, 1991; Cohen,
Cohen, West, & Aiken, 2003). As Cohen et al. (2003) noted,

Doing so yields two straightforward, meaningful interpretations of each first-
order regression coefficient of predictors entered into the regression equation:
(1) effects of individual predictors at the mean of the sample, and (2) average
effects of each individual predictors [sic] across the range of the other vari-
ables. Doing so also eliminates the nonessential multicollinearity [emphasis
added] between first-order predictors and predictors that carry their interac-
tion with other predictors. (p. 266)

Heuristic Example

As noted in Chapter 4, moderator variables “speak to how or why . . .
effects occur,” and “moderator variables specify when certain effects will
hold” (Baron & Kenny, 1986, p. 1176; emphasis added). One way to
model moderator effects is through interaction terms.

9. A GLM Interpretation Rubric 295



Our heuristic example involves the blood alcohol levels of n = 32
cases. The predictors are body weight in pounds and number of cocktails
consumed. Table 9.14 presents the three initial measured variables, as well
as the two predictor variables transformed into centered/nonstandardized
scores. The interaction term (LBSxDRIN) is computed simply by multiply-
ing these centered predictor variables by each other. Table 9.15 presents
the bivariate correlation matrix for the data.

The R2 value reported in Table 9.16 (91.841%) suggests that one can
get a very accurate prediction of blood alcohol using only weight and
number of drinks, assuming these data generalize. As reported in Table
9.16, the prediction for unstandardized, uncentered variables is �Y i =
0.09941 + (–0.00058 × weight in pounds) + (0.02388 × number of
drinks).

However, as reported in Table 9.16, the R2 is even higher (i.e.,
98.135%) when we add the interaction term to the regression model. To
understand the origins of this effect, the Table 9.16 β weights can be inter-
preted apples to apples, because the β weights are the multiplicative
weights in the regression model for the measured variables in their stan-
dardized forms, with standard deviations all set to 1. As noted previously,
unlike a given β weight, a given b weight is jointly confounded by (a) the
explanatory utility of a measured predictor, (b) SDY, and (c) SDXj.

Within the context of exactly these measured variables, and not con-
sidering how much time was spent drinking, or whether food was con-
sumed, the number of drinks is the single most influential factor, with
intoxication increasing as drinks increase (β = +0.85779). However, other
factors held constant, intoxication differed with heaviness, with heavier
people tending to be less intoxicated for a given amount of nonzero con-
sumption (β = –0.42732).

But the interaction effect of the number of drinks with weight is not
zero, reflected in the fact that the β for the interaction (i.e., –0.25089) is
nonzero. Thus, there is a unique predictive contribution of the various dif-
ferent combinations of drinks and weight not explained by considering
drinks and weight each acting in their own right.

The b weights can also be interpreted more concretely in terms of
anticipated changes in the �Y i scores. For example, the b weight for
drinks (i.e., +0.02388) indicates that, other factors held constant and
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limited to the context of these measured variables, consuming one more
cocktail yields a predicted increase in blood alcohol level of about
0.024. Similarly, holding the number of drinks constant (but assuming
some consumption), in the context of these measured variables, an
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TABLE 9.14. Drinks-by-Pounds Interaction Example

SPSS Computed Variables

Case/Statistics Blood alcohol Weight Drinks D_LBS D_DRINKS LBSxDRIN

1 0.04 100 1 –70.0 –3.0 210.0
2 0.11 100 3 –70.0 –1.0 70.0
3 0.19 100 5 –70.0 1.0 –70.0
4 0.26 100 7 –70.0 3.0 –210.0
5 0.03 120 1 –50.0 –3.0 150.0
6 0.09 120 3 –50.0 –1.0 50.0
7 0.16 120 5 –50.0 1.0 –50.0
8 0.22 120 7 –50.0 3.0 –150.0
9 0.03 140 1 –30.0 –3.0 90.0

10 0.08 140 3 –30.0 –1.0 30.0
11 0.13 140 5 –30.0 1.0 –30.0
12 0.19 140 7 –30.0 3.0 –90.0
13 0.02 160 1 –10.0 –3.0 30.0
14 0.07 160 3 –10.0 –1.0 10.0
15 0.12 160 5 –10.0 1.0 –10.0
16 0.16 160 7 –10.0 3.0 –30.0
17 0.02 180 1 10.0 –3.0 –30.0
18 0.06 180 3 10.0 –1.0 –10.0
19 0.11 180 5 10.0 1.0 10.0
20 0.15 180 7 10.0 3.0 30.0
21 0.02 200 1 30.0 –3.0 –90.0
22 0.06 200 3 30.0 –1.0 –30.0
23 0.09 200 5 30.0 1.0 30.0
24 0.13 200 7 30.0 3.0 90.0
25 0.02 220 1 50.0 –3.0 –150.0
26 0.05 220 3 50.0 –1.0 –50.0
27 0.09 220 5 50.0 1.0 50.0
28 0.12 220 7 50.0 3.0 150.0
29 0.02 240 1 70.0 –3.0 –210.0
30 0.05 240 3 70.0 –1.0 –70.0
31 0.08 240 5 70.0 1.0 70.0
32 0.11 240 7 70.0 3.0 210.0

M 0.096 170.00 4.00 0.00 0.00 0.00
SD 0.063 46.56 2.27 46.56 2.27 104.11



increase of weight by 1 pound yields a predicted decrease in blood alco-
hol level of –0.00058.

The β weights can be used to make similar statements, but we are now
predicting the z-score values of the measured outcome variable. As
explained in Chapter 8, in all situations, from worst case to best case, the
mean of the �Y i scores equals the mean of the outcome variable (i.e., either
Y or zY). Thus, for the measured variables in their standardized form,
MzY = MŶ = 0.

The SOSs of the Yi scores and the �Y i scores will only be equal iff we
are at the best-case extreme, when R2 = 100%, and SOSEXPLAINED = SOSY.
Therefore, when we are predicting the zY scores, only when R2 = 100%
will the �Y i scores have SOS = n – 1 (so that SOS / [n – 1] = SD2 = 1.0), and
SD = SD2 = 1.0, and the �Y i scores will be in z-score form. In all other cases,
for the measured variables in standardized form, the �Y i scores are not z
scores.

In the current example, we can say that an increase in the number of
drinks by 1 standard deviation yields a predicted increase in the �Y i scores
of +0.85779. Or we can say that an increase in weight by 1 standard devi-
ation yields a predicted change in the �Y i scores of –0.42732 (i.e., a
decrease). Such statements, using metrics of SDs, are more useful when the
standard deviations of the predictors are familiar, meaningful, and well
established.
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TABLE 9.15. Pearson r Matrix for the Measured and the Centered Variables

SPSS
SPSS Variables

Variable BLOOD LBS DRINKS D_LBS D_DRINKS LBSxDRIN

BLOOD 1.0000
LBS –0.4273 1.0000
DRINKS 0.8578 0.0000 1.0000
D_LBS –0.4273 1.0000 0.0000 1.0000
D_DRINKS 0.8578 0.0000 1.0000 0.0000 1.0000
LBSxDRIN –0.2509 0.0000 0.0000 0.0000 0.0000 1.0000

Note. The correlations of the two original and the two centered predictor variables with the outcome
variable are equal. Also note that the interaction term is perfectly uncorrelated with the other two
predictors in both their uncentered and centered forms.



Some Key Concepts

Throughout the general linear model, result interpretation should be
approached using a two-stage, hierarchical strategy. First, address the
question “Do I have anything?” by consulting some combination of
(a) statistical significance, (b) effect sizes, and (c) external or internal
replicability evidence. Do not interpret NHSST results as tests of
replicability. Iff the answer to the first question is yes, then and only
then address the question: “From where do my detected effects origi-
nate?” For most regression cases, both standardized weights and
structure coefficients must be consulted to understand fully data
dynamics.

However, it is important to note that when you have nothing
statistically (i.e., a zero effect size), you may nevertheless have
something huge scientifically. For example, if you are doing an equiv-
alence study of the side effects of a new chemotherapy drug versus a
placebo, a zero effect size might be unprecedented and hugely impor-
tant.

Stepwise methods should not be used. Instead, when the selection
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TABLE 9.16. Regression Coefficients for Various Models

Statistics

Variable/Statistic b SEb β t

Uncentered predictors
LBS –5.80E-04 7.20E-05 –0.42732 –8.056
DRINKS 0.02388 0.00148 0.85779 16.171
a 0.09941 0.01399 7.105
R2 91.841%

Centered predictors
D_LBS –5.80E-04 7.20E-05 –0.42732 –8.056
D_DRINKS 0.02388 0.00148 0.85779 16.171
a 0.09625 0.00330 29.156
R2 91.841%

Full model
D_LBS –5.80E-04 3.50E-05 –0.42732 –16.558
D_DRINKS 0.02388 7.18E-04 0.85779 33.237
LBSxDRIN –1.52E-04 1.57E-05 –0.25089 –9.721
a 0.09625 0.00161 59.923
R2 98.135%

Note. The a weight in analyses involving the centered variables equals the MY reported in Table
9.14, and also equals MŶ .



of a more parsimonious set of variables is necessary in predictive
applications, use all-possible-subsets analyses. However, replicability
analyses are especially important when any variable selection strate-
gies are used, because these decisions may especially be impacted by
sampling error.

Complementary regression methods can be used to supplement
primary results. Both commonality analysis and path analysis offer
alternative decompositions of the actual or the estimated correlations.
Path analysis may be used to explore both the direct and the indirect
effects of predictors.

Taking predictors to exponential powers other than 1 to explore
curvilinear relations may be useful when initial effect sizes not invok-
ing exponentiated predictors are appreciably smaller than R2 = 100%.
Interaction effects can be explored in regression by using product vari-
ables involving the measured predictors in centered/nonstandardized
form. Interaction models may be useful in testing moderator effects
(Baron & Kenny, 1986).

��� Reflection Problems ���

1. Venn diagrams can be heuristically powerful in understanding regression

dynamics, notwithstanding the limitation that two-dimensional graphics

cannot capture all the influences operating in more complex spaces

(Craeger, 1969). Consider an example in which we have 200 units of

information regarding the amount and origins of individual differences on

the variable, Y. Let’s say Y is predicted by three measured variables, X1,

X2, and X3. There are potentially seven commonality partitions of the

SOSEXPLAINED (i.e., U1, C12, C13, C123, U2, C23, and U3).

On graph paper, draw a rectangle that is 20 wide × 10 high. Now

draw the areas of information explained or predicted by the three predic-

tors in their various combinations, where the area for X1 is in the lower

right corner of the Y and is 5 wide by 7 high (i.e., U1 + C12 + C13 = 35).

Draw the useful X2 information such that this area is 5 wide × 4 high, and

the rightmost portion of X2 (1 wide by 4 high) overlaps with the useful

information in X1.

Draw the useful information of X3 as 5 wide × 7 high at the top of

the rectangle, but not to the far right, subject to the restriction that a
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2-wide-×-4-high portion overlaps with the information explained by X1,

and a 4-wide-×-1-high portion overlaps with the information explained by X2.

We now have U1 = 24, C12 = 3, C123 = 1, C13 = 7, U2 = 13, C23 = 3,

and U3 = 27. What is the SOSEXPLAINED, the SOSUNEXPLAINED, and the R2?

What is the r2 of each predictor with the Yi scores? What is the r2 of each

predictor with the ei scores? What is the rY with �Y
2? What is the r2 of

each predictor with the �Y i scores (i.e., each squared structure coeffi-

cient)?

2. Find a real dataset, such as one of the datasets built into computer statis-

tics packages. Pick a problem with 10 to 15 measured variables, and per-

form a stepwise regression. Then conduct all-possible-subsets analyses for

the same data. Do the results agree as to the best predictor set size, and

the best predictors? Rerun the stepwise analysis, using only the first 15

cases. How do the stepwise results change?

3. Draw a path diagram in which variable Y is predicted by variable X. Insert

the path coefficient 0.5 on the path. Now draw a second diagram incor-

porating the first diagram, but adding a new variable, M, with a path

from X to M with a path coefficient of 0.7, and a path from M to Y also

with a path coefficient of 0.7. In the new diagram, the path from X to Y

now has a path coefficient of 0.0. What does the comparison of the two

path models tell you about how X predicts Y, and the role that M plays in

the prediction? In addition to Baron and Kenny (1986), look first at

Frazier, Tix, and Baron (2004), and then at Shrout and Bolger (2002).

4. Interpret these results, making up a specific context for the study:

R2 = 4%

“Adjusted” R2 = –16%

Invariance “double cross-validation” coefficients

β1 = 0.25; rS for X1 = 0.75

β2 = 0.20; rS for X2 = 0.50

β3 = –0.20; rS for X3 = 0.00
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r �Y using group 1’s β weights and group 1’s data with �Y using group 1’s data and group 2’s β weights = 0.05

r �Y using group 2’s β weights and group 2’s data with �Y using group 2’s data but group 1’s β weights = –0.15



5. Interpret these results, making up a specific context for the study:

R2 = 50%

“Adjusted” R2 = 47%

pCALCULATED = 0.11

Invariance “double cross-validation” coefficients

β1 = 0.6; rS for X1 = 0.9

β2 = 0.0; rS for X2 = –0.7

β3 = 0.4; rS for X3 = 0.9
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r �Y using group 1’s β weights and group 1’s data with �Y using group 1’s data and group 2’s β weights = 0.95

r �Y using group 2’s β weights and group 2’s data with �Y using group 2’s data but group 1’s β weights = 0.85



10

One-Way Analysis of
Variance (ANOVA)

A
nalysis of variance (ANOVA) is a statistical analysis for evaluat-
ing the equality of means (i.e., mean differences, or differences of
means) on a single, at least intervally-scaled outcome variable
across two or more groups. The outcome variable must at least

be intervally-scaled, or the means cannot reasonably be computed, much
less compared.

Many of the ideas underlying ANOVA concepts were formulated by
Sir Ronald Fisher, beginning in 1918, as noted by Huberty (1999) in his
brief history of statistics. Fisher popularized these and related methods in
his hugely influential books, including those published in 1925 and 1935.
ANOVA procedures were greatly facilitated by Snedecor’s (1934) devel-
opment of a relevant test statistic, which he suggested be named F in
Fisher’s honor.

The purpose of this chapter is to present ANOVA terminology and
the ANOVA computational process, with an emphasis on explaining the
“homogeneity of variance” assumption that ANOVA presumes, and why
this assumption is required. The chapter addresses what should be an
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obvious paradox: When location and dispersion are two separate charac-
terizations of data, how can the analysis of variance test whether group
dependent variable means are equal? Dispersion may be a useful charac-
terization of how well a mean represents a set of scores, once we have the
mean. But dispersion is not used in calculating central tendency, and being
told only about the dispersion of a set of scores tells us nothing about
what will be the numerical value for the mean.

When the means of only two groups are being compared, ANOVA
and the two-sample t test yield identical pCALCULATED values for a given
dataset, and the ANOVA FCALCULATED equals tCALCULATED

2 (because t is a
score-world test statistic, and F is an area-world test statistic). However,
when testing the equality of means with more than two groups, ANOVA
has several advantages, only one of which involves control of the
experimentwise Type I error rate.

��� Experimentwise Type I Error

In Chapter 6, a Type I error was defined as rejecting H0 when in reality the
null hypothesis is true in the population. We limit the likelihood of making
this error on a given hypothesis test by selecting a small value for pCRITICAL

(or α) for a given test. What was actually being defined in Chapter 6 was
αTESTWISE, which is the probability of making a Type I error for a given, sin-
gle hypothesis test.

Experimentwise error rate (αEXPERIMENTWISE) refers to the probability of
having made one or more Type I errors anywhere within the study. When
only one hypothesis is tested for a given group of participants in a study,
the experimentwise error rate will exactly equal the testwise error rate. But
when more than one hypothesis is tested in a given study, the two error
rates may not be equal.

Given the presence of multiple hypothesis tests (e.g., two or more
pairs of means are being compared, two or more dependent variables are
tested) in a single study, the testwise and the experimentwise error rates
will still be equal iff the hypotheses (or the dependent variables) are per-
fectly correlated. Logically, the correlation of the dependent variables will
impact the experimentwise error rate because, for example, when one has
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perfectly correlated hypotheses, in actuality one is still only testing a single
hypothesis.

Thus, αEXPERIMENTWISE = αTESTWISE iff (a) only one hypothesis in tested in a
given study, or (b) the hypotheses (or the dependent variables) being tested
are perfectly correlated. Otherwise, αEXPERIMENTWISE will be greater than
αTESTWISE. Two factors impact the degree of inflation of Type I error proba-
bility reflected in αEXPERIMENTWISE: (a) the number of hypotheses tested and
(b) the degree of correlation among the dependent variables or the hypoth-
eses being tested.

When the dependent variables or hypotheses tested are perfectly
uncorrelated, the experimentwise error rate (αEXPERIMENTWISE) can be calcu-
lated. This is done using the formula related to work by Bonferroni (see
Howell, 2002, pp. 384–386):

αEXPERIMENTWISE = 1 – (1 – αTESTWISE)K (10.1)

where K is the number of perfectly uncorrelated hypotheses being tested at
a given testwise α level (αTESTWISE). Love (1988) presented a mathematical
proof of the formula.

For example, if three perfectly uncorrelated hypotheses (or dependent
variables) are tested, each at the αTESTWISE = 0.05 level of statistical signifi-
cance, the experimentwise Type I error rate will be

αEXPERIMENTWISE = 1 – (1 – αTESTWISE)K

= 1 – (1 – 0.05)3

= 1 – (0.95)3

= 1 – (0.95(0.95)(0.95))
= 1 – (0.9025 (0.95))

= 1 – 0.8574
αEXPERIMENTWISE = 0.1426

Thus, for a study testing the equality of means across two groups on
each of three perfectly uncorrelated dependent variables—using the two-
sample t test, each at the αTESTWISE = 0.05 level of statistical significance—
the probability is 0.1426 (or 14.26%) that one or more null hypotheses
will be incorrectly rejected. Most unfortunately, knowing this will not
inform the researcher as to (a) how many Type I errors (e.g., one, two,
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three) are being made, or (b) which one or more of the statistically signifi-
cant hypotheses is, in fact, a Type I error.

Table 10.1 presents these calculations for several conventional
αTESTWISE levels and for various numbers of perfectly uncorrelated depen-
dent variables or hypotheses. Clearly, because exponential functions are at
work, experimentwise Type I error rates can inflate quite rapidly as we
test more hypotheses. Experimentwise error rate inflation also occurs
when we test multiple hypotheses in a study, even when the hypotheses or
the dependent variables are not perfectly uncorrelated, although the infla-
tion is less severe as the dependent variables or the hypotheses are more
highly correlated.
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TABLE 10.1. Experimentwise Type I Error Inflation
When Hypotheses Are Perfectly Uncorrelated

Testwise α Tests Experimentwise α

1 – ( 1 – 0.05) ^ 1 =
1 – ( 0.95) ^ 1 =
1 – 0.95 = 0.05000a

Range over αTESTWISE = 0.01

1 – ( 1 – 0.01) ^ 5 = 0.04901
1 – ( 1 – 0.01) ^ 10 = 0.09562
1 – ( 1 – 0.01) ^ 20 = 0.18209

Range over αTESTWISE = 0.05

1 – ( 1 – 0.05) ^ 5 = 0.22622
1 – ( 1 – 0.05) ^ 10 = 0.40126
1 – ( 1 – 0.05) ^ 20 = 0.64151

Range over αTESTWISE = 0.10

1 – ( 1 – 0.10) ^ 5 = 0.40951
1 – ( 1 – 0.10) ^ 10 = 0.65132
1 – ( 1 – 0.10) ^ 20 = 0.87842

Note. “^” = “raise to the power of.”
aThe first set of calculations demonstrates that when only one test is
conducted, the experimentwise error rate equals the testwise error rate,
as should be expected if the formula behaves properly.



Heuristic Explanation

However, these concepts are too abstract to be readily grasped. Happily,
the two error rates can be explained using an intuitively appealing exam-
ple involving coin tosses (cf. Witte, 1985, p. 236). If the toss of heads is
equated with a Type I error, and if a coin is tossed only once, then the
probability of a head on the one toss (αTESTWISE), and of at least one head
within the set (αEXPERIMENTWISE) consisting of one toss, will both equal 50%.

If the coin is tossed three times, rather than only once, the testwise
probability of a head on each toss is still exactly 50% (i.e., αTESTWISE = 0.50,
not 0.05). Now Equation 10.1 is a perfect fit to this situation (i.e., is a lit-
eral analogy rather than merely a figurative analogy), because the coin’s
behavior on each flip is literally uncorrelated with the coin’s behavior on
previous flips. That is, a coin is not aware of its behavior on previous flips,
and does not alter its behavior on any single flip, given some awareness of
its previous behavior.

Thus, the experimentwise probability (αEXPERIMENTWISE) that there will
be at least one head in the whole set of three flips will be exactly

αEXPERIMENTWISE = 1 – (1 – αTESTWISE)K

= 1 – (1 – 0.50)3

= 1 – (0.50)3

= 1 – (0.50(0.50)(0.50))
= 1 – (0.2500(0.50))

= 1 – 0.125
αEXPERIMENTWISE = 0.875

Figure 10.1 illustrates these concepts in a more concrete fashion.
There are eight equally likely outcomes for sets of three coin flips. These
are all listed in the table. Seven of the eight equally-likely sets of three flips
involves one or more Type I errors, defined in this example as a head. And
7 / 8 = 0.875, as expected, according to Equation 10.1.

Controlling Experimentwise Error Rates

Researchers can use either of two strategies to control the inflation of the
experimentwise error rate. Note that “experimentwise error rate” always
means the “experimentwise Type I error rate.”
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First, because αEXPERIMENTWISE is partially a function of αTESTWISE, as sug-
gested by Equation 10.1, αEXPERIMENTWISE can be controlled by lowering our
initial αTESTWISE. The Bonferroni correction involves using a new testwise α
level, αTESTWISE*, computed by dividing αTESTWISE by the number of K
hypotheses in the study:

αTESTWISE* = αTESTWISE / K (10.2)

For example, if we are testing five hypotheses, and the initial αTESTWISE =
0.05, our new αTESTWISE* would be revised to be 0.05 / 5 = 0.01.

Table 10.1 can be consulted to establish that this correction does
roughly achieve the desired effect. As reported in Table 10.1, testing five
hypotheses at α* = 0.01 results in an αEXPERIMENTWISE of 0.049, which is less
than our original α of 0.05.

However, there are some problems with using this correction. First,
unless the hypotheses (or dependent variables) are perfectly uncorrelated,
the correction will be too severe or conservative. The correction is too
severe because Equation 10.1 is correct iff the hypotheses (or dependent
variables) are perfectly uncorrelated and, in other situations, the inflation
of experimentwise error rates is smaller.

Second, even when the hypotheses (or dependent variables) are per-
fectly uncorrelated, there is a big problem with using the Bonferroni cor-
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FIGURE 10.1. All possible families of outcomes for a fair coin flipped three times

Note. The probability of one or more occurrences of a given outcome in a set of events
is 1 – (1 – p)K, where p is the probability of the given occurrence on each trial and K is
the number of trials in a set of perfectly independent events.



rection. As explained in Chapter 6, assuming the effect size and the sample
size are fixed, if we lower α, we are going to raise β, and thus lower our
power against Type II error. So, as a device to control αEXPERIMENTWISE, the
Bonferroni correction is not very useful unless we have (a) a very large
sample size, or we (b) expect large effect sizes, in which cases power will
still remain sufficiently high following the Bonferroni adjustment.

We can instead control αEXPERIMENTWISE by testing fewer hypotheses,
without altering at all our initial αTESTWISE. This may achieve our objective
of controlling αEXPERIMENTWISE without reducing power.

An omnibus hypothesis is a test of differences in means across groups
that simultaneously considers all group means. For example, if we test H0:
MMALES = MFEMALES, when we consider that these are the only categories
constituting gender, then the hypothesis is an omnibus hypothesis. If we
test H0: MFRESHMEN = MSOPHOMORES = MJUNIORS = MSENIORS = MGRADUATE STUDENTS,
when we are concerned with only these five groups of students, then this
null is an omnibus hypothesis.

In this second example, if a researcher wanted to compare five means
prior to the invention of ANOVA, there was no recourse except to per-
form t tests on all possible pairs of means. According to Equation 6.2, this
would require performing 10 t tests (i.e., [5 (5 – 1)] / 2). These 10 t tests
are not completely uncorrelated (e.g., knowledge of whether MFRESHMEN =
MSOPHOMORES and MFRESHMEN = MJUNIORS may presage a finding with regard to
MSOPHOMORES = MJUNIORS). Nevertheless, some inflation in experimentwise
error would result from performing the 10 t tests.

ANOVA would directly test the omnibus null hypothesis that H0:
MFRESHMEN = MSOPHOMORES = MJUNIORS = MSENIORS = MGRADUATE STUDENTS, thus
avoiding both the inflation of the experimentwise error rate, and a
Bonferroni correction that would lessen power. And, as will be explained
in Chapter 11, ANOVA has some other positive features in addition to the
capacity to test omnibus nulls about mean differences.

��� ANOVA Terminology

ANOVA has some of its own technical terminology, mainly to confuse
graduate students about concepts that they would otherwise find quite
understandable. A way or factor is an independent or grouping variable in
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ANOVA. In this book, the term “way” is used throughout, mainly to
avoid confusing the ANOVA “factor” with the concept of “factor” used in
a different, multivariate methodology called factor analysis (Thompson,
2004).

Ways are always grouping variables (e.g., experimental group, gender)
and therefore are treated as being nominally-scaled. These variables may
have started out as other than nominally-scaled (e.g., IQ pretest scores),
but in such cases must be converted to nominal/categorical scale in order
to implement ANOVA.

An ANOVA study must involve at least one way, because science
focuses on relationships among variables. A scientific study is never con-
ducted using an outcome or dependent variable, but no independent or
predictor variables. It may be worthwhile for descriptive purposes to
examine a single outcome variable and no predictors, but such descriptive
analyses do not explore the origins of individual differences in different
participants’ scores on the outcome, and therefore are not scientific,
although descriptions can in themselves be quite valuable.

One-way studies are ANOVA studies involving a single grouping vari-
able (e.g., gender). Multiway studies involve more than one way. When
studies are multiway, researchers often specify the number of ways within
their descriptions (e.g., “two-way,” “three-way”).

Because each way is a grouping variable, rather than a constant, each
must consist of two or more groups, called levels. For example, if a
researcher is exploring the effects of two teaching methods on posttest
reading achievement scores, the one way has two levels.

Researchers often describe their studies by citing the number of levels in
each way. For example, a researcher may say, “I did a 5 × 3 × 2 ANOVA.”
Here the number of numbers (i.e., three) is the number of ways in the study.
Of course, the number of outcome variables is necessarily one, because
ANOVA always involves a single intervally-scaled outcome variable, so a 5
× 4 × 3 design implies consideration of a total of four variables.

The numbers themselves specify the levels in each way. In this exam-
ple, the three ways have five levels (e.g., freshman, sophomore, junior,
senior, graduate students), three levels (e.g., left-handed, right-handed,
ambidextrous), and two levels (e.g., male and female), respectively.
Because nominally-scaled variables, such as ways, have no intrinsic order,
the ways may be specified in any order (e.g., 5 × 3 × 2, 2 × 3 × 5, 3 × 5 × 2).

310 FOUNDATIONS OF BEHAVIORAL STATISTICS



However, some researchers prefer to name the ways by progressing down-
ward from ways having the most to the fewest levels.

If one multiplies the number of levels times each other (e.g., 5 × 3 × 2
= 30), the number of groups, or cells, is obtained. For example, in a 5 × 3
× 2 design, there may be (1) freshman, left-handed males; (2) freshman,
left-handed females; (3) freshman, right-handed males; . . . (30) graduate
student, ambidextrous females.

A design is balanced if there are equal numbers of participants in each
group. If the numbers of participants in each group are not exactly equal,
the design is unbalanced. Balanced designs necessarily involve total sample
sizes that are some multiple of the number of cells in the design (e.g., for a
5 × 3 × 2 design, n = 30, n = 60, n = 90).

��� The Logic of Analysis of Variance

ANOVA can be implemented to estimate the effect sizes associated with
group mean differences, or to test the statistical significance of differences
in group means, or for both these purposes. The first focus is on practical
significance, whereas the second focus involves NHSST. Here we treat the
analysis for a balanced, one-way design.

Several steps are involved in calculating the analysis of variance. The
building blocks of ANOVA are the total sum of squares (SOSTOTAL), the
sum of squares between (SOSBETWEEN), and the sum of squares within
(SOSWITHIN). The SOSBETWEEN and SOSWITHIN are the constituent parts of
SOSTOTAL, so together they always sum exactly to the SOSTOTAL. Thus,
SOSBETWEEN and SOSWITHIN are the partitioned, nonoverlapping (and
uncorrelated) portions of the SOSTOTAL, and with any two of these three
sums of squares we could compute the missing term by addition or sub-
traction.

Table 10.2 presents data for balanced (nk = 9; n = 18) two-level one-
way ANOVAs for four different outcome variables (i.e., Y1, Y2, Y3, and
Y4). Notice that the outcome variables’ dispersions are exactly equal
across the two groups for all four variables (e.g., for Y1, SD1 = SD2 = 1.22;
for Y2, SD1 = SD2 = 1.22; for Y3, SD1 = SD2 = 0.71; for Y2, SD1 = SD2 =
0.71). Also, the mean differences (1.0) are smaller for Y1 and Y3 (means
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TABLE 10.2. Four Outcome Variables Scores
for a Two-Level One-Way ANOVA

SPSS Variable

Case/
statistic Y1 Y2 Y3 Y4 Level

1 1 1 2 2 1
2 2 2 2 2 1
3 2 2 3 3 1
4 3 3 3 3 1
5 3 3 3 3 1
6 3 3 3 3 1
7 4 4 3 3 1
8 4 4 4 4 1
9 5 5 4 4 1

Group 1 (n1 = 9)
M 3.00 3.00 3.00 3.00
SOS 12.00 12.00 4.00 4.00
SD2 1.50 1.50 0.50 0.50
SD 1.22 1.22 0.71 0.71

10 2 3 3 4 2
11 3 4 3 4 2
12 3 4 4 5 2
13 4 5 4 5 2
14 4 5 4 5 2
15 4 5 4 5 2
16 5 6 4 5 2
17 5 6 5 6 2
18 6 7 5 6 2

Group 2 (n2 = 9)
M 4.00 5.00 4.00 5.00
SOS 12.00 12.00 4.00 4.00
SD2 1.50 1.50 0.50 0.50
SD 1.22 1.22 0.71 0.71

Total sample (n = 18)
M 3.50 4.00 3.50 4.00
SOS 28.50 42.00 12.50 26.00
SD2 1.68 2.47 0.74 1.53
SD 1.29 1.57 0.86 1.24

Note. The dispersion of the Yi scores is exactly equal across the two groups for all four
outcome variables.



of 3.00 and 4.00) than the mean differences (2.0) for Y2 and Y4 (means of
3.00 and 5.00).

However, the outcome variables’ dispersions are larger for Y1 and Y2
(SD1 = SD2 = 1.22) than the dispersion for Y3 and Y4 (SD1 = SD2 = 0.71).
Thus, Y1 involves (a) the smaller mean difference (i.e., 1.0) coupled with
(b) the larger within-group score dispersion (SD1 = SD2 = 1.22), while Y4
involves (a) the larger mean difference (i.e., 2.0) coupled with (b) the
smaller within-group score dispersion (SD1 = SD2 = 1.22). The ANOVA
calculations are illustrated here using the Y1 scores.

The SOSTOTAL is the sum of squares of the scores on the dependent
variable, which is always the focus in any univariate parametric method.
As always, SOSTOTAL is computed by finding the mean of the Y1 scores,
and subtracting this mean from each person’s Y1i score to get a deviation
(y1i) of each person’s score from the grand mean (MY1.). The grand mean
is simply the mean computed ignoring group membership, or what previ-
ously has simply been called the mean. But because several means are com-
puted in ANOVA, calling the overall mean the grand mean distinguishes
this mean from the means computed separately for each group. As always,
these deviation scores are then squared and summed, yielding the
SOSTOTAL.

The SOSTOTAL is computed as a measure of variability of the dependent
variable scores around the mean of the total sample, ignoring the fact that
the ANOVA groups even exist. If the outcome scores are all the same,
SOSTOTAL is zero, indicating that the scores do not constitute a variable. In
this situation, ANOVA calculations cannot be performed for either statis-
tical or practical significance evaluation purposes. We simply have no
information about the origins of individual differences in Yi scores when
the Yi scores do not constitute a variable.

Table 10.3 illustrates these calculations for the Y1 variable. Here we
have SOSY1 = 28.50 units of squared information about the amount and
origins of individual differences. Not everyone contributed equally to
creating this information. For example, cases #1 and #18 contributed
disproportionately large amounts of information. At any rate, because
SOSY1 ≠ 0, we can proceed to partition this information, to determine how
much of this information could be predicted or explained solely with
knowledge of to which group the 18 participants belonged.
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Next, we compute the SOSBETWEEN. As always with an SOS, the
SOSBETWEEN is also a measure of variability of data about means, but
SOSBETWEEN is a measure of the variability or spreadoutness of k group
means (not individual scores) about the grand mean. Table 10.4 illustrates
the calculation of SOSBETWEEN as a squared deviation of the two means
about the grand mean.

Iff the group means are all the same, they will all equal the grand
mean, and the SOSBETWEEN will be zero. As the group means differ more
from each other, they will also increasingly differ from the grand mean,
and SOSBETWEEN will become larger. Conversely, if you know only that the
SOSBETWEEN is zero, you do not know what the group means were, but you
know that they were identical. And if you know only that the SOSBETWEEN

is not zero, you do not know what the group means were, but you know
that they were not identical.

Thus we begin to resolve the paradox of how the analysis of variance
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TABLE 10.3. Calculation of SOSTOTAL as the Sum of Squared Deviations
of n = 18 Individual Scores about the Grand Mean (MY1.)

Case Y1 – MY1. = y1 y12

1 1 – 3.50 = –2.5 6.25
2 2 – 3.50 = –1.5 2.25
3 2 – 3.50 = –1.5 2.25
4 3 – 3.50 = –0.5 0.25
5 3 – 3.50 = –0.5 0.25
6 3 – 3.50 = –0.5 0.25
7 4 – 3.50 = 0.5 0.25
8 4 – 3.50 = 0.5 0.25
9 5 – 3.50 = 1.5 2.25

10 2 – 3.50 = –1.5 2.25
11 3 – 3.50 = –0.5 0.25
12 3 – 3.50 = –0.5 0.25
13 4 – 3.50 = 0.5 0.25
14 4 – 3.50 = 0.5 0.25
15 4 – 3.50 = 0.5 0.25
16 5 – 3.50 = 1.5 2.25
17 5 – 3.50 = 1.5 2.25
18 6 – 3.50 = 2.5 6.25

SOSY 28.50



can test whether group dependent variable means are equal, given that
location and dispersion are two separate characterizations of data. The
dispersion of the Yi scores, measured in the SOSY, tells us nothing about
what will be the numerical value for MY. But the SOSY and the SOSBETWEEN

are two different characters, and the SOSBETWEEN (unlike the SOSTOTAL)
directly quantifies the magnitude of mean differences.

Finally, we compute the SOSWITHIN. We could do so by subtraction
(i.e., SOSTOTAL – SOSBETWEEN), but then the meaning and relevance of
SOSWITHIN would be lost to us. SOSWITHIN is the sum of the k SOS values
within the various groups, calculated separately as squared deviations of
scores within each group about each group’s own individual kth group
mean, ignoring both all other groups and the grand mean, and then
pooled together.

We shall soon see that this pooling is reasonable iff certain circum-
stances are met. And if the pooling used to compute the SOSWITHIN is
unreasonable, then the ANOVA process and both its statistical and practi-
cal significance results may be fatally compromised. Table 10.5 illustrates
these calculations for the heuristic data.

Conceptually, what is SOSWITHIN, and why is SOSWITHIN used in
ANOVA computations? In Chapter 3, we learned that all means do not do
equally well at representing a set of scores. For example, for a given data
set, if SD is zero, the mean does a spectacular job of representing the
scores. But if SD is huge, the mean serves poorly, and indeed may serve so
poorly at characterizing central tendency as to be nonsensical. Just
because we can compute a statistic does not mean that the statistic is
always sensible!

The SOSWITHIN computes the outcome variable dispersion separately in
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TABLE 10.4. SOSBETWEEN as the Weighted (by nk) Sum of Squared
Deviations of k = 2 Group Means about the Grand Mean (MY1.)

Group Mk – MY1. = y1k y1k
2 × nk = SOSk

1 3.00 – 3.50 = –0.5 0.25 × 9 = 2.25
2 4.00 – 3.50 = 0.5 0.25 × 9 = 2.25

SOSBETWEEN 4.50



each group, and then pools these estimates. The separate estimates quan-
tify how well each group mean does at representing the scores in a given
group. The pooled estimate quantifies for the means as a set how well
these means do at representing the scores in the respective groups.

Based on these considerations, would the mean differences on Y1 and
Y3 be equally noteworthy, given that the mean difference in both cases
equals 1.0? Would the mean differences on Y2 and Y4 be equally note-
worthy, given that the mean difference in both cases equals 2.0? Which
combination of (a) means and (b) within-group dispersions least contra-
dicts a null hypothesis assumption that the two means are equal? Which
combination of (a) means and (b) within-group dispersions most contra-
dicts a null hypothesis assumption that the two means are equal?
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TABLE 10.5. SOSWITHIN as the Pooling of the SOS’s
Computed Separately Within Each k Group,

Ignoring Both the Other Group and the Grand Mean

Case Y1 – Mk = y1 y12

1 1 – 3.00 = –2.0 4.00
2 2 – 3.00 = –1.0 1.00
3 2 – 3.00 = –1.0 1.00
4 3 – 3.00 = 0.0 0.00
5 3 – 3.00 = 0.0 0.00
6 3 – 3.00 = 0.0 0.00
7 4 – 3.00 = 1.0 1.00
8 4 – 3.00 = 1.0 1.00
9 5 – 3.00 = 2.0 4.00

Subtotal 12.00

10 2 – 4.00 = –2.0 4.00
11 3 – 4.00 = –1.0 1.00
12 3 – 4.00 = –1.0 1.00
13 4 – 4.00 = 0.0 0.00
14 4 – 4.00 = 0.0 0.00
15 4 – 4.00 = 0.0 0.00
16 5 – 4.00 = 1.0 1.00
17 5 – 4.00 = 1.0 1.00
18 6 – 4.00 = 2.0 4.00

Subtotal 12.00
SOSWITHIN 24.00



��� Practical and Statistical Significance

The sums of squares partitions can be employed to estimate the effect size
associated with group differences, in a metric like that of r2. This estimate
is called η2, or synonymously, the correlation ratio:

η2 = SOSBETWEEN / SOSTOTAL (10.3)

The correlation coefficient and the correlation ratio are two distinct
concepts, even though the first word of the their two-word names is the
same. The r is a score-world statistic, and η2 is an area-world statistic.

Note that Equation 10.3 is remarkably similar to Equations 8.5 and
8.6, which are formulas for estimating the r2 and the R2 effect sizes! Thus,
key elements of the general linear model are beginning to emerge.

Nevertheless, also recognize that r2 is a measure of linear relationship
between two intervally-scaled variables. The η2 quantifies how much of
the variability in the Yi scores, measured as SOSY, we can explain or pre-
dict with knowledge only about the group membership of each partici-
pant. Thus, η2 involves one intervally-scaled variable, and one nominally-
scaled variable, and not two intervally-scaled variables. And it makes no
sense to talk about linear relationship in the context of one of two nomi-
nally-scaled variables because the concept of linearity itself only makes
sense in a context, such as a scattergram, in which both axes are demar-
cated by intervals for continuous variables.

So, η2 is a measure of relationship sensitive to all sorts of relationship,
and not just linear relationship. For the Table 10.2 data, the η2 values are
15.8% (i.e., 4.50 / 28.50), 42.8%, 36.0%, and 69.2%, respectively.

Just as the uncorrected effect size r2 / R2 can be “corrected” (e.g.,
Ezechiel, 1930), the η2 can be adjusted to remove estimated capitalization
on sampling error. One such correction is Hays’ (1981) ω2.

The starting point in the calculation of ω2 requires the entries in the
variance partitions summary table, such as that presented for regression in
Table 9.1. Given the general linear model, the basic computations are sim-
ilar in ANOVA. One difference is that the sums of squares are computed
differently, but once in hand, we manipulate these in parallel fashion. And
in regression the dfEXPLAINED equals the number of predictor variables,
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whereas in one-way ANOVA, the dfBETWEEN is k – 1. Using the sums of
squares computed in Tables 10.3, 10.4, and 10.5, Table 10.6 presents the
summary table for the tests of mean differences on Y1.

Hays’ ω2 can be computed as

ω2 = [SOSBETWEEN – (k – 1)MSWITHIN] / [SOSY + MSWITHIN] (10.4)

where k is the number of levels in the ANOVA way. For our data we have

[4.50 – (2 – 1)1.50] / [28.50 + 1.50]
[4.50 – (1)1.50] / [28.50 + 1.50]

[4.50 – (1)1.50] / 30.00
[4.50 – 1.50] / 30.00

3.00 / 30.00
ω2 = 10.0%

As explained in Chapter 7, and illustrated in Table 7.1, corrected effect
sizes are equal to or smaller than their uncorrected counterparts. The dif-
ference (i.e., “shrinkage”) is greater when (a) sample size is small, (b) the
number of measured variables is larger, or (c) the population effect size is
smaller. Here we had an n = 18 for our η2 = 15.8%, so shrinkage to ω2 =
10.0% is not an undue surprise.

One can also use the sums of squares variance partitions to test the
statistical significance of the differences in the group means. When either
the levels of the way exhaust all possible values of the way (e.g., gender in
humans is measured at two levels), or the levels being used are the only
ones of interest to the researcher (e.g., we collect data only from freshmen
and seniors, because we only care about freshmen and seniors for a given
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TABLE 10.6. Variance Partitions for the MY1 Comparisons

Source SOS df MS FCALCULATED pCALCULATED η2 ω2

Between 4.50 1 4.50 3.00 0.102 15.8% 10.0%
Within 24.00 16 1.50
Total 28.50 17 1.68

Note. For ANOVA, the dfBETWEEN = the numbers of groups minus 1 (i.e., dfBETWEEN = k – 1).



purpose), the NHSST TS using the F distribution is calculated by dividing
the MSBETWEEN by the MSWITHIN. This FCALCULATED can be reexpressed as
pCALCULATED by invoking the Excel spreadsheet function

=FDIST(FCALCULATED,dfBETWEEN,dfWITHIN)

��� The “Homogeneity of Variance” Assumption

As explained previously, the SOSWITHIN is computed by calculating sepa-
rately the sums of the squared deviations from the group mean within
each group, ignoring both all other groups and the grand mean. Then the
cell sums of squares are “pooled” by adding them together, yielding
SOSWITHIN. This pooling process is legitimate iff (if, and only if) the
variabilities of the scores in each group are roughly the same. This is the
so-called homogeneity (equality) of variance assumption required in
ANOVA.

When we pool, we are invoking a kind of averaging process, or at
least a summation similar to that which we use in computing the numera-
tor for the mean. It is not reasonable to lump things together when they
are wildly disparate.

This homogeneity of variance assumption is necessary both for statis-
tical significance testing and for effect size interpretation. The conse-
quences of meeting or not meeting this assumption can be concretely
demonstrated using some small hypothetical datasets.

Equal Group Means, Equal Group Variances

Figure 10.2 presents hypothetical data for a three-group one-way ANOVA
with five people in each cell. The five scores in each cell are exactly equally
“spread out” (i.e., the homogeneity of variance assumption is exactly met
in all three groups). The group means are also equal (i.e., all 3.0), and the
grand mean is 3.0, too. As noted earlier, because SOSBETWEEN is the sum of
the squared deviations of the group means from the grand mean, when the
group means are all the same, the SOSBETWEEN will be zero.

Figure 10.2 presents the computations confirming that the expected
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outcome is realized. The SOSBETWEEN and the η2 equal zero when the group
means are equal. The figure uses different computational procedures than
those illustrated in Tables 10.3, 10.4, and 10.5, but the procedures are
algebraically equivalent. Because we have perfectly met the homogeneity
of variance assumption, at least as regards this assumption we can fully
trust both the ANOVA practical and NHSST results.
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Equal Group Means, Unequal Group Variances

Figure 10.3 presents hypothetical data for a three-group one-way ANOVA
with five people in each cell. Here the five scores in each cell vary in their
“spreadoutness” (i.e., the scores in group 1 are the least spread out, and
the scores in group 3 are the most spread out). However, the group means
are all equal (i.e., all group means equal 3.0, and the grand mean is 3.0,
too).
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Even though the homogeneity of variance assumption is no longer met
perfectly, because the three means are all identical, the effect size and sta-
tistical significance results remain unchanged. Thus, if there are no group
mean differences, ANOVA results will not be distorted even if the homo-
geneity of variance assumption is violated.

Unequal Group Means, Equal Group Variances

Figure 10.4 presents hypothetical data for a three-group one-way ANOVA
with five people in each cell. The five scores in each cell have exactly the
same amount of “spreadoutness.” However, the group means are now dif-
ferent (i.e., 2.0, 3.0, and 4.0, respectively, while the grand mean is still
3.0). Now the η2 effect size (SOSBETWEEN / SOSTOTAL) is 25%, and
FCALCULATED is 2.00. The results honor the differences in the means, and
because the homogeneity of variance assumption is met perfectly, we can
vest confidence in a conclusion that the result is not an artifact of violating
a statistical assumption.

Unequal Group Means, Unequal Group Variances

Figure 10.5 presents hypothetical data for a three-level one-way ANOVA
with five people in each cell. The five scores in each cell no longer have
exactly the same amount of spreadoutness. However, the group means are
still different (i.e., 2.0, 3.0, and 4.0, respectively, while the grand mean is
still 3.0). Now the effect size (SOSBETWEEN / SOSTOTAL) is 20%, and
FCALCULATED is 1.50.

Even though the magnitude of the mean differences is identical to
those in the previous example, both effect size and statistical significance
results in this example have been attenuated, because the homogeneity of
variance assumption has been violated to some degree. It is important to
note that such violations can lead to degrees of distortion causing the
unwary researcher to make entirely unjustified interpretations.

Testing Homogeneity of Variance Using NHSST

The homogeneity assumption requires an assertion that the population
variances of the dependent variable scores for each group are the same
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(e.g., SD1
2 = SD2

2 = SD3
2). This, of course, is the null hypotheses that the

dependent variable score variances are equal across the groups. Some
researchers elect to evaluate the homogeneity of variance assumption by
using the statistical significance tests available within software ANOVA
procedures. For the two-group situation, for either the two-sample t test
or one-way, two-level ANOVA, NHSST results may be obtained by invok-
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ing Equation 6.3. For three or more groups, a test proposed by Levene
(1960) may be used.

Using NHSST to evaluate whether methodological assumptions are
met (and thus the researcher hopes that the test of this H0 is not statisti-
cally significant) can suggest a paradox. As Thompson (1994c) noted,

The researcher desirous of statistically significant effects for substantive main
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and interaction effects will quite reasonably employ the largest sample possi-
ble so as to achieve the hoped-for results. Regrettably, large samples that tend
to yield significance for substantive tests also tend to yield statistically signifi-
cant results leading to rejection of method assumption null hypotheses, as in
the test of equality of dependent variable variances across groups required by
the ANOVA homogeneity of variance assumption. (p. 13)

The implication is that common sense (and effect sizes), and not just
NHSST, must be used to evaluate whether the homogeneity of variance
assumption has been reasonably well met.

Unfortunately, empirical studies of published research show that
researchers too often ignore the assumptions of their statistical methods
(Keselman et al., 1998). These assumptions are more important than many
researchers realize, as suggested by Wilcox (1998) in his article titled
“How many discoveries have been lost by ignoring modern statistical
methods?”

��� Post Hoc Tests

If the omnibus null hypothesis is not rejected, the researcher’s analytic
tasks are completed. On the other hand, iff both (a) the omnibus null is
rejected, and (b) the way has more than two levels, further analyses are
required to determine which group means differ. Perhaps every mean dif-
fers to a statistically significant degree from every other mean. Or, at the
other extreme, perhaps only one mean differs from all the other means,
none of which, in turn, differ from each other.

Some have argued that some post hoc tests may be invoked in the
presence of three or more groups, even if the omnibus hypothesis is not
tested or rejected. However, what are described here are the most common
practices as of this date.

Post hoc tests are analyses conducted following the rejection of an
omnibus null involving three or more levels to investigate more specifically
which group means differ. There are many names for these analyses, some
of which are summarized in Table 10.7. The alternative names are con-
structed by selecting one entry from the first column of the table and pair-
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ing the selection with one entry chosen from the second column of the
table (e.g., post hoc contract, a posteriori comparison).

Post hoc analysis can be conceptualized in converse, but equally
appropriate, terms as detecting how many homogeneous subsets there are
within the means. For example, given a six-level way, if one mean differed
from the remaining five, none of which differed to a statistically significant
degree from each other, there would be two homogeneous subsets. Or, if
all six means differed to a statistically significant degree each from every
other, there would be six homogeneous subsets of means.

Or, among the ordered means, the first two means might not differ
from each other, but the first mean might differ from means three through
six, and the second mean might not differ from the third mean, but might
differ to a statistically significant degree from means four through six, and
so forth. Figure 10.6 presents a graphic representation of such an analysis,
yielding five homogeneous subsets among the six means.

One among several alternative reporting formats uses superscripts.
For example, the researcher may report the results of these analyses by
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TABLE 10.7. Synonymous Names
for ANOVA Post Hoc Tests

Phrase elements

First Second

post hoc contrast
a posteriori comparison
unfocused test
unplanned
follow-up

FIGURE 10.6. Graphic representation of results from a post hoc analysis



saying, “The group means were M1 = 10.5a, M2 = 15.2a,b, M3 = 19.8b,c,
M4 = 24.9c,d, M5 = 30.2d,e, and M6 = 35.1e,” where means with common
superscripts do not differ to a statistically significant degree.

Researchers using ANOVA soon realized the importance of conduct-
ing post hoc analyses for statistically significant omnibus hypotheses
involving three or more levels. Of course, if a way has exactly two levels
(e.g., boys versus girls), post hoc methods are unnecessary even if the
omnibus null is rejected, because we know exactly where such differences
arise (i.e., boys and girls must differ, “duh”—or if you are Australian,
“der”).

Post hoc contrasts compare two means. Simple contrasts compare the
outcome variable mean of one level of the way with the outcome variable
mean of another level of the way (e.g., H0: MFRESHMEN = MSOPHOMORES, or
“the dependent variable mean of the 10 freshmen equals the dependent
variable mean of the 10 sophomores”). No levels are combined to create
either (or both) of the two means being compared using simple contrasts.
Complex contrasts compare two means, either one or both of which are
computed by creating means from combining levels of the way (e.g., H0:
MFRESHMEN = MSOPHOMORES, JUNIORS; H0: MFRESHMEN = MSOPHOMORES, JUNIORS, SENIORS;
H0: MFRESHMEN, SOPHOMORES = MJUNIORS, SENIORS, or “the dependent variable
mean of the 20 students who are either freshmen or sophomores equals
the dependent variable mean of the 20 students who are either juniors or
seniors”).

At first pale the use of conventional t tests to conduct post hoc analy-
ses might have some appeal, because post hoc tests evaluate whether two
means are equal, and two-sample t tests can be used to evaluate the equal-
ity of two means. But one reason we are using ANOVA in the first place is
to avoid the inflation of the experimentwise error rate. Of course, an argu-
ment might be made that the experimentwise error rate would be inflated
less severely if we only conducted t tests following the rejection of an
omnibus null, rather than using t tests straightaway and without testing
the omnibus. Indeed, this “protected” t testing would be less problematic
than the unprotected counterpart.

However, there are serious difficulties with using conventional t tests
for post hoc analyses. For example, even using protected t tests post hoc
when evaluating means results in some experimentwise error rate infla-
tion. Also, we would not be taking into account how many means are
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being compared. For example, the error rate inflation from using pro-
tected t tests would not be equal in one study involving 3 levels versus
another study involving 10 levels.

In addition, using conventional t tests would not take into account the
number of contrasts we are conducting, even across situations involving
the same number of means. For example, given a three-level way, accord-
ing to Equation 6.2 ([3 (3 – 1)] / 2), three simple contrasts are possible.
Three complex contrasts are also possible: {1 vs. 2,3}, {2 vs. 1,3}, and
{3 vs. 1,2}. Thus, for a three-level way, there are three post hoc tests if only
simple contrasts are being conducted, but there are six post hoc tests if
both simple and complex contrasts are being conducted.

If we have a four-level way, there are six possible simple contrasts
([4(4 – 1)] / 2). But there are 19 complex contrasts for this design:

{1 vs. 2,3} {1 vs. 2,4} {1 vs. 3,4}
{2 vs. 1,3} {2 vs. 1,4} {2 vs. 3,4}
{3 vs. 1,2} {3 vs. 1,4} {3 vs. 2,4}
{4 vs. 1,2} {4 vs. 1,3} {4 vs. 2,3}
{1,2 vs. 3,4} {1,3 vs. 2,4} {1,4 vs. 2,3}
{1 vs. 2,3,4} {2 vs. 1,3,4} {3 vs. 1,2,4} {4 vs. 1,2,3}

Clearly, as we have more levels, (a) the number of possible contrasts
expands quite rapidly, and (b) the discrepancy between the number of only
simple contrasts versus the number of both simple and complex contrasts
expands as well.

Beginning in the 1950s, statisticians began to propose dozens of modi-
fied t test procedures that take into account (a) how many group means or
levels and (b) how many contrasts (i.e., only simple, or both simple and
complex) are being considered. Conceptually, these post hoc methods can
be thought of as being special t tests that invoke a Bonferroni-type correc-
tion taking into account the number of post hoc hypothesis tests. Actually,
the methods adjust the critical value of the test statistic to take these issues
into consideration.

Commonly used post hoc tests do either (a) only simple or (b) both
simple and complex contrasts, and they do all the contrasts available for a
given situation. Thus, for a three-level way, a post hoc method that evalu-
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ates only simple contrasts tests all three of the possible simple contrasts,
and a post hoc method that does both simple and complex contrasts does
all six of the possible contrasts.

An important implication of this is that (a) post hoc tests might evalu-
ate contrasts not of interest to you and (b) force you to pay for testing
uninteresting hypotheses as part of the Bonferroni-type correction. As we
shall see in Chapter 12, we can escape this potentially unsavory situation
by using planned contrasts instead.

Two of the most commonly used of the myriad post hoc tests are the
Tukey and the Scheffé tests. Tukey post hoc tests evaluate all (and only)
the simple contrasts available for a given design. Thus, the correction con-
siders only simple contrasts, but will nevertheless differ for designs with
k = 3, versus k = 4, versus k = 5 levels. Scheffé post hoc tests evaluate all
the both simple and complex contrasts that are available for a given
design. Thus, the Scheffé corrections for a k = 3 design are more severe
than are the Tukey corrections for a k = 3 design. And the gaps between
the amounts of correction between Tukey and Scheffé methods grow rap-
idly as more levels are involved in the design. One consequence of these
adjustment dynamics is that Scheffé tests have considerably less power
than Tukey tests, especially as the number of levels increases.

Clearly, if only simple contrasts are of interest, of the two choices dis-
cussed here Tukey tests are the correct choice. If complex contrasts are of
interest, especially when the ways have many levels, Scheffé methods will
be more appealing when the sample size is very large, so that power will
remain reasonable even with these tests. Note that with some post hoc
tests, including choices not considered here, it is possible to reject the null
omnibus hypothesis and then find none of the post hoc tests statistically
significant.

Some Key Concepts

For a two-level one-way design, the two-sample t test and one-way
ANOVA of the same data yield identical pCALCULATED and effect size
statistics. For one-way designs involving more than two levels, the use
of all possible pairwise two-sample t tests will result in inflated
experimentwise error rates. To avoid this problem, and for other rea-
sons explained in Chapter 11, ANOVA is used only to test mean dif-

10. One-Way Analysis of Variance (ANOVA) 329



ferences for three or more groups, and can be used to test mean
differences involving only two groups. ANOVA can be used to test
only the statistical significance of mean differences, or only the practi-
cal significance of these differences, or both.

ANOVA requires an assumption that in the population the dis-
persions of the dependent variable scores are equal across the groups.
The failure to meet this homogeneity of variance assumption may
compromise the accuracy of both NHSST and effect size statistics.

When an omnibus null hypothesis is rejected and the way has
three or more levels, post hoc tests are necessary to determine where
the mean differences lie. Post hoc tests evaluate either simple (e.g.,
Tukey tests) or both simple and complex contrasts (e.g., Scheffé tests).
Because for a given design Scheffé tests evaluate more hypotheses, and
therefore invoke a stronger Bonferroni-type correction, Scheffé tests
have less power against Type II error.

��� Reflection Problems ���

1. Consider the outcome variable scores for three studies involving balanced

one-way two-level ANOVAs.

Study A

Group 1: 8, 9, 10; M = 9; Group 2: 10, 11, 12; M = 11

Study B

Group 1: 7, 8, 9; M = 8; Group 2: 11, 12, 13; M = 12

Study C

Group 1: 7, 9, 11; M = 9; Group 2: 9, 11, 13; M = 11

Effect sizes are zero when sample statistics exactly match the expecta-

tions specified in the null hypothesis. For each of the three studies, what

is the effect size for the homogeneity of variance hypothesis? Is the effect

size zero for the null hypothesis tested by ANOVA in any of the three

studies?

In Study A versus Study B, which, if any, of the three sums of squares

(i.e., total, between, within) will be equal? In Study A versus Study C,

which, if any, of the three sums of squares (i.e., total, between, within)
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will be equal? The mean difference (M1 = 9; M2 = 11) is the same for

Study A and Study C, the homogeneity of variance assumption is per-

fectly met in both studies, and the ns are the same across the two stud-

ies. Will the pCALCULATED be equal for these two studies?

What is the rank ordering of the pCALCULATED values for the three stud-

ies? Are the three η2 values equal across any of the studies?

2. Run omnibus ANOVA tests for each of the four outcome variables pre-

sented in Table 10.2. Compare and contrast the ANOVA results for (1) Y1

versus Y2, (2) Y1 versus Y3, (3) Y4 versus Y2, and (4) Y4 versus Y3. What

explains the dynamics reflected in these comparisons? What two issues

drive ANOVA tests? Why is it (perfectly) reasonable that both these fac-

tors drive ANOVA results?

3. Limiting the discussion to n = 8, and with possible scores of only {1, 2, 3,

4, 5}, what 8 scores would yield the mathematically maximum values of

dispersion for this context? What are the mathematically maximum

values of (a) the sum of squares, (b) the variance, and (c) the SD, for this

context? Draw the histogram of these data.

Next, let’s now assume that the data involve a two-level one-way

ANOVA problem, with two groups of scores. We have already computed

the SOSTOTAL. Compute (a) the SOSBETWEEN and (b) the SOSWITHIN. Why

does the SOSWITHIN yield this result for these data?

In Chapter 3, I emphasized that every report of a mean should include

a report of the related SD, and that the SD quantifies how well a given

mean does at representing all the scores. In ANOVA, the SOSBETWEEN

quantifies the degree of mean differences. What will SOSBETWEEN be for a

two-level one-way ANOVA if the two dependent variable means are

equal? What will SOSBETWEEN be for a four-level one-way ANOVA if the

four dependent variable means are equal?

In descriptive statistics, the SD for the dataset quantifies how well the

group mean does at representing all the scores in the dataset. In ANOVA,

does the SOSWITHIN perform an analogous function of quantifying how

noteworthy the groups’ mean differences are, by taking into account as

part of the mean comparison how well each mean does at representing

the scores in each group?
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4. The effect sizes for a given design are context-driven. For example, if we

explore the effects on myocardial infarcts of being randomly assigned to

take 81, 325, or 750 milligrams of aspirin daily, we cannot conclusively

extrapolate findings to cover taking 2,500 milligrams of aspirin daily. So,

too, if studies cover similar but different dosages, the effect sizes cannot

be directly compared exactly apples-to-apples. But can the effects be

rescaled to take design differences into account? Consult Fowler (1987),

Olejnik and Algina (2003), and Ronis (1981) to help clarify your views.
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11

Multiway and
Other Alternative

ANOVA Models

I
n Chapter 10, only one-way designs were considered. In this chapter,
multiway designs are introduced. The use of nonfactorial models is
discussed. And the possibilities of fixed-, random-, and mixed-effects
models are considered.

��� Multiway Models

One-way ANOVA for k greater than two levels represented an important
advance over the alternative of conducting all possible pairwise t tests,
thus avoiding the associated experimentwise Type I error rate inflation.
However, multiway ANOVA designs afford two additional advantages
over alternative analyses.

First, design efficiencies can be realized by evaluating two or more
omnibus hypotheses within a single study rather than across separate stud-
ies. For example, if we wish to evaluate the effects of three dosages of drug
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A on blood pressure and four alternative dosages of drug B on blood pres-
sure, we can conduct a single two-way 3 × 4 ANOVA, rather than two in-
dependent one-way ANOVAs. We will theoretically obtain equivalent
results across these alternatives, if sample sizes are compared apples-to-
apples. So, we can answer more questions in fewer studies by using
multiway ANOVA.

Second, and perhaps more importantly, as noted in Chapter 9,
researchers are often keenly interested in testing interaction effects, and
multiway ANOVA can be used to investigate these effects, just as interac-
tion effects can be tested in regression. Investigating which educational or
therapy intervention works best for everybody may be interesting, but also
may be quixotic. Investigating in the same study which treatment works
best for whom is important, and usually essential. In reality, few treat-
ments work best (or worst) for every conceivable group of people
(Cronbach, 1957).

Terminology

A main effect is an omnibus effect that evaluates differences in dependent
variable means across all the levels of a given way, ignoring all the levels of
all the remaining ways. An interaction effect evaluates the joint impacts of
the combinations of the levels from two or more ways on the differences in
the dependent variable means, ignoring all the levels of all the ways not
involved in the interaction.

For example, in the previously described 3 × 4 design, if the design
was balanced with 10 people in each cell, the total sample size would be
120. Two main effect null hypotheses may be tested:

(a) The mean blood pressure of the 40 people taking dose 1 of drug A
equals the mean blood pressure of the 40 people taking dose 2 of
drug A equals the mean blood pressure of the 40 people taking
dose 3 of drug A, and

(b) the mean blood pressure of the 30 people taking dose 1 of drug B
equals the mean blood pressure of the 30 people taking dose 2 of
drug B equals the mean blood pressure of the 30 people taking
dose 3 of drug B equals the mean blood pressure of the 30 people
taking dose 4 of drug B.
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Note that ANOVA, unlike the conventional t test, which cannot eval-
uate interaction effects, readily handles tests of interaction hypotheses. For
this design, only one interaction hypothesis, the two-way A × B interaction
effect, may be tested. However, designs with more levels accommodate
more main and interaction effect tests. For example, all three-way designs
can involve testing three main effects, three two-way interaction effects,
and one three-way interaction effect. A four-way design can involve test-
ing four main effects, six two-way interaction effects, four three-way inter-
action effects, and one four-way interaction effect.

Mathematically, it can be proven that for any balanced design, all
pairs of all main and interaction hypotheses are perfectly uncorrelated (see
Hester, 2000, pp. 22–27). Consequently, the sums of squares for all effects
in a balanced design are unique for a given effect and, together with the
SOSERROR, sum to equal the SOSY exactly.

This property, that omnibus hypotheses are perfectly uncorrelated for
all balanced ANOVA designs, was noteworthy for two reasons. First, a
balanced ANOVA can be effectively thought of as a Case #1 regression
situation. And, as we saw in Chapter 9, all the computations necessary for
an analysis in this situation are vastly simplified. The computational sim-
plicity accomplished through the magic of the ANOVA logic, which yields
perfectly uncorrelated, nonoverlapping effects for balanced designs, was
hugely important in the decades when all computations had to be per-
formed (repeatedly, to check for calculation errors) on calculators.

Second, obtaining nonoverlapping or unique effects for each omnibus
test also hugely simplifies result interpretation, just as regression result
interpretation is simplified in Case #1. If 10% of the SOSY is predicted or
explained by information about to which levels of way A the participants
belonged, and if that 10% has no commonality with any other effect,
there is no debate about allocating nonexistent common predictive credit.

Computational Example

We will reuse the Table 9.3 blood alcohol data to illustrate the computa-
tions for a factorial 2 × 2 analysis. Here, again, we are partitioning the
information regarding the amount and origins of individual differences
quantified by the SOSTOTAL of 0.124. The small number even for n = 32
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participants suggests that blood alcohol levels do not vary much, on aver-
age, even when people have had up to seven drinks. Of course, on this
variable, small score differences can yield huge differences in motor skills,
such as those required to operate an automobile. Clearly, what makes a
given SOS large or small depends on what variable we are measuring.

For the purposes of this analysis, because ANOVA requires nomi-
nally-scaled data on the independent variables, we have mutilated the
intervally-scaled scores on the two predictors to yield dichotomies. You
should find this troubling. When, if ever, would one be willing to muti-
late interval independent variables simply so that ANOVA could be
used?

However, the mutilation does afford us the heuristic opportunity to
compare apples-to-apples effects for the nonmutilated and the mutilated
data. And remember that this comparison is made within the context of a
single study.

When such mutilations are made across the studies in a literature, the
consequences may be quite dire. If all researchers mutilated their interval
predictors by using sample-specific medians, the medians may well differ
in each sample, and then, when the ANOVA results are inconsistent across
studies, we do not know whether (a) the inconsistencies across studies
occurred because results were unstable across samples, or (b) the varia-
tions in median cutpoints used to create groups made consistency unat-
tainable, and the findings irreconcilable.

More will be said later on the question of mutilation of intervally-
scaled data. Table 11.1 presents the Table 9.3 data after the intervally-
scaled predictors have been converted into nominal scale.

First, we will compute the two main effect sums of squares. We could
use the same procedures described in detail in Chapter 10, but will instead
use algebraically-equivalent formulas that yield identical results. These
formulas involve the outcome scores squared, and then summed (i.e., not
the SOS, because SOS is instead the sum of the squared deviations from
the mean). Here, as reported in Table 11.1, the outcome scores squared
and then summed equal 0.4204. The formulas also require the sums of the
scores in the four cells: Σ1,1, Σ1,2, Σ2,1, and Σ2,2. Last, the formulas require
the sum of all the outcome scores, which is 3.08, as reported in Table
11.1.
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TABLE 11.1. Conversion of Table 9.13 Data into ANOVA Form

SPSS Variables

Group/case W_GRP DR_GRP BLOOD Cell total BLOOD2

Low weight, low drinks
1 1 1 0.04 0.0016
2 1 1 0.11 0.0121
5 1 1 0.03 0.0009
6 1 1 0.09 0.0081
9 1 1 0.03 0.0009

10 1 1 0.08 0.0064
13 1 1 0.02 0.0004
14 1 1 0.07 0.47 0.0049

Low weight, high drinks
3 1 2 0.19 0.0361
4 1 2 0.26 0.0676
7 1 2 0.16 0.0256
8 1 2 0.22 0.0484

11 1 2 0.13 0.0169
12 1 2 0.19 0.0361
15 1 2 0.12 0.0144
16 1 2 0.16 1.43 0.0256

High weight, low drinks
17 2 1 0.02 0.0004
18 2 1 0.06 0.0036
21 2 1 0.02 0.0004
22 2 1 0.06 0.0036
25 2 1 0.02 0.0004
26 2 1 0.05 0.0025
29 2 1 0.02 0.0004
30 2 1 0.05 0.30 0.0025

High weight, high drinks
19 2 2 0.11 0.0121
20 2 2 0.15 0.0225
23 2 2 0.09 0.0081
24 2 2 0.13 0.0169
27 2 2 0.09 0.0081
28 2 2 0.12 0.0144
31 2 2 0.08 0.0064
32 2 2 0.11 0.88 0.0121

Sum 3.08 3.08 0.4204



The SOSWEIGHT, or the main effect SOS for weight, is computed as

SOSA = {[(Σ1,1 + Σ1,2)2 + (Σ2,1 + Σ2,2)2] / [j(n)]} – {Σ2 / [i(j)(n)]} (11.1)

where i is the number of levels in the A way, j is the number of levels in the
B way, and n is the number of participants in each cell. For our data we
have

{[(0.47 + 1.43)2 + (0.30 + 0.88)2] / [2(8)]} – {3.082 / [2(2)(8)]}
{[1.902 + 1.182] / [2(8)]} – {3.082 / [2(2)(8)]}

{[3.6100 + 1.3924] / [2(8)]} – {9.4864 / [2(2)(8)]}
{5.0024 / [2(8)]} – {9.4864 / [2(2)(8)]}

{5.0024 / 16} – {9.4864 / 32}
0.3127 – 0.2965

SOSWEIGHT = 0.0162

The SOSDRINKS, or the main effect SOS for drinks, is computed as

SOSB = {[(Σ1,1 + Σ2,1)2 + (Σ1,2 + Σ2,2)2] / [i(n)]} – {Σ2 / [i(j)(n)]} (11.2)

For our data we have

{[(0.47 + 0.30)2 + (1.43 + 0.88)2] / [2(8)]} – {3.082 / [2(2)(8)]}
{[0.772 + 2.312] / [2(8)]} – {3.082 / [2(2)(8)]}

{[0.5929 + 5.3361] / [2(8)]} – {9.4864 / [2(2)(8)]}
{5.9290 / [2(8)]} – {9.4864 / [2(2)(8)]}

{5.9290 / 16} – {9.4864 / 32}
0.3706 – 0.2965

SOSDRINKS = 0.0741

The SOSWEIGHT × DRINKS is computed as

SOSA × B = {[Σ1,1
2 + Σ2,1

2 + Σ1,2
2 + Σ2,2

2] / n} (11.3)
– SOSA – SOSB – {Σ2 / [i(j)(n)]}
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For our data we have

{[0.472 + 1.432 + 0.302 + 0.882] / 8} – 0.0162 – 0.0741 – {3.082 / [2(2)(8)]}
{[0.2209 + 2.0449 + 0.0900 + 0.7744] / 8}

– 0.0162 – 0.0741 – {9.4864 / [2(2)(8)]}
{3.1302 / 8} – 0.0162 – 0.0741 – {9.4864 / [2(2)(8)]}

{3.1302 / 8} – 0.0162 – 0.0741 – {9.4864 / 32}
0.3913 – 0.0162 – 0.0741 – 0.2965

SOSA × B = 0.0045

Notice that we subtract out of SOSA × B the main effect SOS that
reflects the differences of the two outcome variable means on both the A
way and the B way. This reflects the reality that the differences in the four
cell means are jointly influenced by the interaction effect and both main
effects. One implication, as we will see momentarily, is that plotting the
cell means to understand interaction effects can be misleading because, as
the title of Rosnow and Rosenthal’s (1991) article implies, “If you’re look-
ing at the cell means, you’re not looking at only the interaction (unless all
main effects are zero).”

The SOSWITHIN is computed as

SOSWITHIN = Σ(Yi
2) – {[Σ1,1

2 + Σ2,1
2 + Σ1,2

2 + Σ2,2
2] / n} (11.4)

For our data we have

0.4204 – {[0.472 + 1.432 + 0.302 + 0.882] / 8}
0.4204 – {[0.2209 + 2.0449 + 0.0900 + 0.7744] / 8}

0.4204 – {3.1302 / 8}
0.4204 – 0.3913

SOSWITHIN = 0.0291

These values can then be arrayed into the summary table reported in Table
11.2.

The degrees of freedom for main effects equal the number of levels in
a given way minus 1. This reflects the computation of SOSBETWEEN as
involving all group means in the presence of the estimated grand mean
(i.e., MY.). Given MY, only k – 1 of the group means are free to vary.
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The degrees of freedom for interaction effects equal the degrees of
freedom for the main effects named in a given interaction term times each
other. For example, for a 5 × 4 × 3 design, dfA × B = 12, dfA × C = 8, dfB × C = 6,
and dfA × B × C = 24.

Interpreting Interaction Effects

The presence of a noteworthy interaction effect implies that the main
effects named in the interaction cannot be interpreted without taking
into account the interaction. For example, if there is an interaction effect
for drug A with drug B, we cannot interpret the main effect for drug A
outside the context of interaction, because we have learned that drug A
works differently in the presence of different levels of drug B. So, the
focus in such cases turns to the interaction effect. The main effects in a
multiway design will be the basis for interpretation only when all inter-
action effects are deemed trivial, based on their pCALCULATED values or
their effect sizes.

As noted in Chapter 9, the recognition of the importance of interac-
tion effects in the social sciences was hugely advanced by Cronbach’s
(1957) American Psychological Association (APA) presidential address.
Cronbach (1957, 1975) noted that a study may involve a way of defining
treatment conditions, called a treatment way, and a pretest measure in the
same domain as the outcome variable (e.g., academic ability) used to
define an aptitude way. The aptitude–treatment interaction (ATI) effect
can be very informative about for whom different treatments work best.
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TABLE 11.2. Summary Table for 2 × 2 Factorial Analysis

Source SOS df MS FCALCULATED pCALCULATED η2

Weight 0.0162 1 0.0162 15.5742 <0.001 13.1%
Drinks 0.0741 1 0.0741 71.2498 <0.001 59.8%
WeightXD 0.0045 1 0.0045 4.3382 0.047 3.6%
Within 0.0291 28 0.0010
Total 0.1240 31 0.0040



The ATI designs are useful, because the search for the elusive treatment
that is best for everyone may be unrealistic.

Unfortunately, the interpretation of interaction effects is not as
straightforward as the procedures recommended in many statistics text-
books. Researchers have defined a Type IV error as occurring when an
hypothesis is correctly rejected but the basis for the rejection is incorrectly
interpreted (Levin & Marascuilo, 1972; Marascuilo & Levin, 1970). In a
related vein, Rosnow and Rosenthal (1989b) noted that interaction effects
are “probably the universally most misinterpreted empirical results in psy-
chology” (p. 1282).

Many textbooks recommend the plotting of cell means to explore
interaction effects, especially for two-way interaction effects. The vertical
axis is used (as always) to represent the outcome variable. Usually the hor-
izontal axis is demarcated by the levels of the aptitude way (e.g., low,
medium, and high IQ). Then symbols (e.g., circles and triangles) are used
to represent cell means across the treatment conditions (e.g., lecture versus
discovery instruction, “talk” therapy versus behavior modification ther-
apy). Like symbols are then linked by like continua (e.g., the three means
for lecture are linked by a continuous line, while the three means for dis-
covery methods are linked by a dashed line).

If a given treatment has higher means across the three IQ levels, then
arguably that treatment is best for all IQ groups, or at least the groups repre-
sented within the study. If the plotted lines cross, then one treatment may be
best for some people, but the other treatments may be best for other people.

These ATI (or other interaction) plots do reflect real differences in the
cell means. This information can be quite important from a practical point
of view. However, plots of the cell means do not reflect only interaction
effect dynamics.

Instead, the cell means used in these plots are impacted by the con-
founded joint influences of a variety of factors. As noted by Rosnow and
Rosenthal (1989a), the cell means “are the combined effects of the interac-
tion, the row effects [a main effect], the column effects [a second main
effect], and the grand mean” (p. 144). By the same token, simple post hoc
tests of the cell means also do not yield insight about the origins of interac-
tion effects, because the interaction effects are not uniquely a function of
the cell means (Boik, 1979).

Figure 11.1 presents the cell means, the margin means, and the grand
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means for the heuristic Table 11.1 data. Figure 11.2 presents a plot of
these four cell means, which is incorrect iff the researcher’s sole focus is on
interpreting the interaction effects.

Interaction effects can correctly be explored by plotting (or analyzing)
corrected or adjusted cell means, rather than the actual cell means (e.g.,
Harwell, 1998). For our data, these values are

Corrected M1,1 = M1,1 – M1,j – Mi,1 + M.
0.058 – 0.118 – 0.048 + 0.096 = –0.012

Corrected M1,2 = M1,2 – M1,j – Mi,2 + M.
0.179 – 0.118 – 0.144 + 0.096 = +0.013

Corrected M2,1 = M2,1 – M2,j – Mi,1 + M.
0.038 – 0.074 – 0.048 + 0.096 = +0.012

Corrected M2,2 = M2,2 – M2,j – Mi,2 + M.
0.110 – 0.074 – 0.144 + 0.096 = –0.012

Marascuilo and Levin (1970) provided various examples of how Scheffé
post hoc methods can be applied to explore these dynamics analytically.
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FIGURE 11.1. Cell and margin means and grand mean

FIGURE 11.2. Plot of cell means



The take-home message is not that plots of cell means are unimportant
from a practical point of view, but instead is that such plots involve more
than interaction dynamics, and plots of adjusted means are of interest if
the focus is on understanding interaction effects.

��� Factorial versus Nonfactorial Analyses

Factorial analyses test all possible main and interaction effects.
Nonfactorial designs test at least one effect but fewer than all the possible
main and interaction effects. One-way designs are inherently factorial. For
our illustrative 3 × 4 design, if we test all three possible omnibus hypothe-
ses, the design is factorial. If we do not conduct any one or more of the
possible omnibus tests, the analysis is no longer factorial.

At first impression one might think that conducting a nonfactorial
analysis is illogical. If the ways are thoughtfully selected, does this not
imply interest in all possible main and interaction effects? However, there
are two possible situations in which nonfactorial designs have appeal,
although the decision in favor of a nonfactorial over a factorial design of
course turns upon thoughtful personal judgment of what is best in a given
situation.

First, in multiway designs with many ways, researchers might reason-
ably forgo the testing of very high-order interaction effects. Even second-
order effects can be complicated to interpret. Think of a five-way design in
which the interpretation of the five-way interaction effect would require
consideration of all the possible combinations of all levels conditioned
upon each other in their effects on the outcome variable. Furthermore, the
means at the highest order involve the fewest participants per estimate,
and so these effects theoretically are least stable.

Second, some researchers forgo testing main effects for ways that are
not malleable. For example, a researcher might conduct a 3 × 2 study
involving a treatment way with three levels, and a gender way. If we find
as a main effect that women learn more than men, how can we apply our
knowledge? Many men will resist having their gender altered in service of
improved outcome variable scores, no matter how persuasive an argument
is presented!
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But if the researcher is not interested in gender as a main effect, why
include gender as a way in the first place? The answer may be that the
researcher only used gender to be able to explore the treatment-by-gender
two-way interaction effect. Perhaps we cannot force a new gender on the
men, but we may be able to teach males one way, and females another
way, if the empirical evidence in favor of doing so is quite compelling.

Note that neither factorial nor nonfactorial analyses always enjoy a
statistical power advantage over each other. Table 11.3 presents hypothet-
ical data involving a three-level treatment way and a two-level gender
way. The factorial analysis is presented in the top of the table. If we decide
not to test the gender omnibus main effect before we analyze any data,
when we conduct the analysis we pool the SOSGENDER and dfGENDER into the
error SOS and df, respectively. The nonfactorial results are presented in
the bottom of Table 11.3 and, for this example, show loss of statistical sig-
nificance (α = 0.05) for the remaining effects in the nonfactorial analysis.

Table 11.4 presents a counterexample for a 2 × 2 design involving two
treatment conditions and participants’ handedness (i.e., left or right domi-
nant). For these data, testing the nonfactorial model results in statistically
significant effects (α = 0.05) that would not otherwise occur.

Some statistical packages allow the researcher to declare which omni-
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TABLE 11.3. Example of a Nonfactorial Analysis Hurting Power

Source SOS df MS FCALCULATED pCALCULATED η2

Factorial

Treatment 45.0 2 22.50 5.40 0.021 22.5%
Gender 55.0 1 55.00 13.20 0.003 27.5%
T × G 50.0 2 25.00 6.00 0.016 25.0%
Error 50.0 12 4.17
Total 200.0 17 11.76

Nonfactorial

Treatment 45.0 2 22.50 2.79 0.098 22.5%
T × G 50.0 2 25.00 3.10 0.080 25.0%
Error 105.0 13 8.08
Total 200.0 17 11.76

Note. Values pooled into error SOS and df are in bold. Entries altered in the conversion to the
nonfactorial analyses are in italics.



bus hypotheses are to be tested. Even if the software package does not
afford this choice, a nonfactorial analysis can be conducted simply by tak-
ing the sums of squares and the df from the effects not being tested, pool-
ing these into the error SOS and df, as illustrated in Tables 11.3 and 11.4,
and then recomputing the mean squares, FCALCULATED and pCALCULATED values.

��� Fixed-, Random-, and Mixed-Effects Models

The notion of randomly sampling participants drawn from the population
of all possible participants is familiar. The power of random samples to
produce representative results (e.g., 2,000 voters randomly sampled out of
160 million eligible voters) is demonstrated on a quadrennial election
cycle in the United States. Logically, if the random sampling of partici-
pants generates data that support generalization to a larger field of partici-
pants, why could we not randomly sample levels for a way from a wider
population of potential levels, and thereby achieve generalization beyond
the levels of the way actually used in the study?

A fixed effect in ANOVA occurs when (a) we use all the conceivable
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TABLE 11.4. Example of a Nonfactorial Analysis Helping Power

Source SOS df MS FCALCULATED pCALCULATED η2

Factorial

Treatment 55.0 1 55.00 6.47 0.064 27.5%
Handed 1.0 1 1.00 0.12 0.749 0.5%
T × H 60.0 1 60.00 7.06 0.057 30.0%
Error 34.0 4 8.50
Total 150.0 7 21.43

Nonfactorial

Treatment 55.0 1 55.00 7.86 0.038 27.5%
T × H 60.0 1 60.00 8.57 0.033 30.0%
Error 35.0 5 7.00
Total 150.0 7 21.43

Note. Values pooled into error SOS and df are in bold. Entries altered in the conversion to the
nonfactorial analyses are in italics.



levels of a way, or (b) we do not want to generalize beyond the levels we
actually employ. For example, if we use male and female as the levels for a
gender way in a study of people, most of us would presume that we have
exhausted the commonly-recognized levels of this way, and treat the gen-
der way as a fixed-effect omnibus. Or, if we include only high school
juniors and seniors as two grade levels in a grade-level way, and we
declare interest in only these two levels, then this way would also be a
fixed-effects way. A fixed-effects ANOVA model occurs when all the
omnibus hypotheses in the analysis are treated as fixed effects.

A random effect presumes a representative sample of levels from the
more numerous potential levels on the way, along with interest in general-
izing from the sampled levels to the population of all possible levels. For
example, a researcher might be interested in studying the efficacy of all
potential lengths of therapy sessions, ranging from 45 minutes to 120 min-
utes, in 5-minute increments: {45, 50, 55, 60, 65 . . . 110, 115, 120}. A
six-level way might be created by randomly sampling the levels: {45, 80,
90, 100, 105, 115}.

A random-effects ANOVA model occurs when all the omnibus
hypotheses in the analysis are treated as random effects. Any interaction
effect involving one or more ways treated as random effects are also con-
sidered random effects. For example, two therapy methods might be levels
deemed to constitute a fixed-effects way. But if the two-way interaction
involves the six-level therapy duration random effect, the 2 × 6 two-way
interaction is considered a random effect. A mixed-effects model occurs
when at least one omnibus hypothesis is treated as a fixed effect, and at
least one omnibus hypothesis is treated as a random effect.

All of the calculations of the (a) sums of squares, (b) degrees of free-
dom, and (c) mean squares are identical for fixed-, random-, and mixed-
effects models. What differs across the models is the denominator used in
computing the FCALCULATED values. In a fixed-effects model, the MSWITHIN is
used as the denominator in computing all the FCALCULATED values. This com-
putation reflects the fact that in a fixed-effects model only the sampling
error variance involved in sampling participants is expected to impact esti-
mates (Kennedy & Bush, 1985).

However, in random-effects and mixed-effects models, some estimates
are impacted by both (a) sampling error variance involving sampling par-
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ticipants and (b) sampling error associated with sampling levels. Thus, in
these models some denominators for calculating F values will be mean
squares other than the MSWITHIN.

The correct denominators for computing FCALCULATED values can be
mathematically derived by solving for various statistics called “expected
mean squares” (i.e., E(MS)). But these calculations are extraordinarily
tedious. An alternative solution invokes a rubric presented in various loca-
tions (e.g., Frederick, 1999; C. R. Hicks, 1973; Ott, 1984).

E(MS) Derivation Rubric

The rubric is illustrated here presuming a factorial model in which the A
way is a random effect for six therapy session lengths, and the B way
involves a comparison of psychoanalytic therapy versus behavioral ther-
apy. We will presume a balanced design of n = 3 in each of the 12 cells.
The rubric involves six steps.

First, create a two-way layout with an empty header and rows that list
the variance partitions, and the subscripts to be used for each partition.

E(MS)

Main Ai

Main Bj

Interaction A × Bij

Error en(ij)

Second, complete the header to characterize the omnibus effects. In
the middle row of the header, put F for any fixed effect, and R for any ran-
dom effect. Remember that any interaction involving one or more random
effects is itself random. In the bottom row of the header, place the sub-
script being used for given effects. In the top row, place the maximum
value for the subscript for a given effect.
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6 2 3
R F R E(MS)
i j n

Main Ai

Main Bj

Interaction A × Bij

Error en(ij)

Third, copy the number in the top row of the header to each of the
rows in that column only for rows in which the header subscript does not
appear in the row label.

6 2 3
R F R E(MS)
i j n

Main Ai 2 3
Main Bj 6 3
Interaction A × Bij 3
Error en(ij)

Fourth, for any row with subscripts that are in parentheses, place a 1
in the cell in the columns that are headed by a letter in the parentheses.

6 2 3
R F R E(MS)
i j n

Main Ai 2 3
Main Bj 6 3
Interaction A × Bij 3
Error en(ij) 1 1
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Fifth, fill in the remaining empty cells of the layout. Put zeroes in
empty cells for a fixed effect. Put 1s in empty cells for a random effect.

6 2 3
R F R E(MS)
i j n

Main Ai 1 2 3
Main Bj 6 0 3
Interaction A × Bij 1 0 3
Error en(ij) 1 1 1

Sixth, use the σ2 symbol for random-effects variance, and φ2 for fixed-
effects variance. Enter σE

2 for the E(MS) for error. Next, for a given row,
use a pencil, thumb, or finger to cover all columns with the row’s subscript
in the bottom row of the header only for row subscripts not in parentheses
(e.g., for the Ai row, cover the first column, which has the subscript i; for
the en(ij) row, cover only the third column, which has the subscript n). So,
for the A-way main effect, cover only the first of the three columns. Then
enter the uncovered weights for rows containing the i subscript and the
associated variance terms in the rightmost column. Of course, if any
uncovered column has a zero entry, the zero cancels out the variance from
that source.

6 2 3
R F R E(MS)
i j n

Main Ai 1 2 3 (2)(3)σA
2 + (1)(1)σE

2

Main Bj 6 0 3
Interaction A × Bij 1 0 3
Error en(ij) 1 1 1 σE

2
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For the B-way main effect, cover only the middle column. Then enter
the uncovered weights and the associated variance terms in the rightmost
column for the B main-effect row. Ignore σA

2 because there is not a j sub-
script for the A-way main effect.

6 2 3
R F R E(MS)
i j n

Main Ai 1 2 3 (2)(3)σA
2 + (1)(1)σE

2

Main Bj 6 0 3 (6)(3)φB
2 + (1)(3)σA × B

2 + (1)(1)σE
2

Interaction A × Bij 1 0 3
Error en(ij) 1 1 1 σE

2

For the two-way interaction effect, cover the two left columns. Then
enter the uncovered weights and the associated variance terms in the
rightmost column for the A × B interaction effect row. Ignore σA

2 and φB
2

because they do not have an ij subscript.

6 2 3
R F R E(MS)
i j n

Main Ai 1 2 3 (2)(3)σA
2 + (1)(1)σE

2

Main Bj 6 0 3 (6)(3)φB
2 + (1)(3)σA × B

2 + (1)(1)σE
2

Interaction A × Bij 1 0 3 (3)σA × B
2 + (1)σE

2

Error en(ij) 1 1 1 σE
2

We now know what the MS is expected to be for each of the four vari-
ance partitions. Logically, when we compute ANOVA FCALCULATED values,
we are trying to evaluate whether the variance source uniquely due to an
effect makes a noteworthy contribution over and above other variance
sources for a given effect. So the correct denominator for these computa-
tions uses all the mean squares contributing to a given effect, except the
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variability uniquely due to the tested effect itself, as reflected in the
E(MS)s.

For the A-way main effect, the E(MS) is 6σA
2 + σE

2. To test the effect
of variance contributed only from A, we are looking for a variance that
contains all these variances except 6σA

2. The variance with this property is
σE

2, the E(MS) for the error source. This means that when we are testing
the random-effect A way, we will compute the F by dividing MSA by the
MSERROR.

For the B-way main effect, the E(MS) is 18φB
2 + 3σA × B

2 + σE
2. Again, to

test this main effect, we are looking for an E(MS) that contains all these
terms except 18φB

2. The E(MS) for the interaction term is 3σA × B
2 + σE

2.
This means that we will compute the FCALCULATED for the B main effect by
dividing MSB by the MSA × B, instead of by the MSERROR.

For the interaction effect, the expected mean square is 3σA × B
2 + σE

2.
Because the only variance source in addition to the A × B interaction is the
error variance, we will compute the F test for this A × B interaction ran-
dom effect by dividing MSA × B by the MSERROR.

Power versus Generality

To make this discussion concrete, Table 11.5 presents an hypothetical
dataset for our 6 × 2 mixed-effects model, in which the B way is treated as
the only fixed effect. Table 11.6 presents the ANOVA summary for the
mixed-effects model. Notice that the A-way main effect and the two-way
interaction effects are both statistically significant, but that the B-way
main effect is not statistically significant.

For pedagogical purposes only—not as a model for the flexible and
incorrect analytic practice of treating the same data by invoking contradic-
tory models—Table 11.6 also presents a fixed-effects summary table for
the same data. As noted previously, the model employed does not change
the sums of squares, the degrees of freedom, or the mean squares. How-
ever, the model selection does impact the denominator used in computing
the FCALCULATED values, and these changes in turn impact the corresponding
pCALCULATED values. For our heuristic data, for the fixed-effects model
reported in Table 11.6, the pCALCULATED for the B way is 6E-8, but for the
mixed-effects model, the pCALCULATED for the B way is 0.301.

To summarize for the two-way case only, a fixed-effects model uses
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TABLE 11.5. Illustrative Data for the Mixed-Effects Model

SPSS variable

Case DV A B

1 42 1 1
2 44 1 1
3 40 1 1
4 47 2 1
5 43 2 1
6 45 2 1
7 46 3 1
8 48 3 1
9 47 3 1

10 51 4 1
11 53 4 1
12 54 4 1
13 56 5 1
14 58 5 1
15 59 5 1
16 61 6 1
17 62 6 1
18 64 6 1
19 47 1 2
20 49 1 2
21 48 1 2
22 52 2 2
23 54 2 2
24 55 2 2
25 57 3 2
26 59 3 2
27 58 3 2
28 63 4 2
29 64 4 2
30 66 4 2
31 49 5 2
32 51 5 2
33 52 5 2
34 54 6 2
35 56 6 2
36 58 6 2



the MSWITHIN as the denominator for all three computations of the
FCALCULATED values. For a random-effects model, the MSWITHIN is used as the
denominator only for the test of the two-way interaction effect, and the
MSA × B is used as the denominator for both main effect tests. For a mixed-
effects model the MSA × B is used to test the fixed-effect main effect, while
the MSWITHIN is used to test both the random-effects main effect and the
interaction effect.

What impact does using a model other than the fixed-effects model
have? As suggested by the heuristic comparisons in Table 11.6, the pres-
ence of random effects within a model can reduce power against Type II
error. So, the capacity to generalize beyond the levels actually used in ran-
dom-effects ways may come at a cost.

None of this is to argue against treating effects as random. Indeed,
some research problems almost cry out for this treatment (see Clark,
1973). But the take-home message is to be thoughtful when making
these decisions, because their consequences can be dramatic. Finally, it
should be noted that some modern statistical packages do not correctly
perform these calculations, so carefully review your computer results for
mixed-effects models.
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TABLE 11.6. Summary Tables for Fixed- versus Mixed-Effects Models

Source SOS df MS FCALCULATED pCALCULATED

Fixed-effects model

A 883.56 5 176.71 73.122 9.9156E-14
B 144.00 1 144.00 59.586 0.00000006
A × B 542.00 5 108.40 44.855 2.0986E-11
Error 58.00 24 2.42
Total 1627.56 35 46.50

Mixed-effects model

A 883.56 5 176.71 73.122 9.9156E-14
B 144.00 1 144.00 1.328 0.301
A × B 542.00 5 108.40 44.855 2.0986E-11
Error 58.00 24 2.42
Total 1627.56 35 46.50

Note. The differences in entries for the two models are highlighted in bold.



��� Brief Comment on ANCOVA

In 1963, Campbell and Stanley wrote an influential chapter on experimen-
tal and quasi-experimental design published in the Handbook of Research
on Teaching. The paperback reprint of this single chapter continues to be
widely used as a design textbook. In their chapter, Campbell and Stanley
(1963, p. 193) recommended the use of a model called the analysis of
covariance (ANCOVA), suggesting that “the use of this more precise anal-
ysis [i.e., ANCOVA] would seem highly desirable.” They also argued that
“covariance analysis and blocking on ‘subject variables’ such as prior
grades, test scores, parental occupation, etc., can be used, thus increasing
the power of the significance test” (p. 196).

ANCOVA can be roughly thought of as “in effect, an analysis of vari-
ance performed [not on the Y scores, but] on the (Y – �Y)’s [or ei scores],
where the �Y’s are predicted in the usual b1X + b0 [regression] way” (Glass
& Stanley, 1970, p. 499), described in Chapter 8. Or, in Cliff’s (1987)
words, “We could say that we are fitting a single regression equation to
the data for all the groups and then doing an anova of the deviation from
the regression line [i.e., the ei scores]” (p. 275). Huitema (1980) and Loftin
and Madison (1991) presented more detailed treatments of ANCOVA.

These linkages are intimated by the layout of the variance partitions in
an ANCOVA summary table. Each main effect has degrees of freedom
equal to the number of levels in a given way minus 1. In a factorial layout,
each interaction effect is presented in a given row, with degrees of freedom
equal to the product of the degrees of freedom for the relevant main
effects. And in the first row of the summary table, the covariates effect is
presented, with degrees of freedom equal to the number of covariates, just
as would be the case in a regression summary table. The degrees of free-
dom for covariates do not take into account group membership, because
grouping is not considered within the covariance residualization portion
of the analysis.

Some brief comments on using ANCOVA are warranted here, because
as Keppel and Zedeck (1989) suggested,

It is somewhat depressing to note that while all statistical methodology books
continue to stress the conclusion that ANCOVA should not be used in quasi-
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experimental designs [i.e., intact groups not randomly assigned], mis-
applications of the procedure are still committed and reported in the litera-
ture. (p. 482)

Three cautions about ANCOVA applications are presented here, with a
particular emphasis on the first concern (Thompson, 1992b).

Homogeneity of Regression Assumption Must Be Met

What ANCOVA actually does is to create a single regression equation,
ignoring groups, to predict dependent variable (Yi) scores using the
covariate(s) (e.g., X1i, X2i, X3i). Then, in essence, an ANOVA, not ignor-
ing groups, is performed using the residualized scores (ei) of each person
computed by subtracting each person’s predicted score ( �Y), based on the
single equation, from the participants’ actual scores (Yi).

These computations are legitimate iff the regression equations that
predict the Yi scores, computed separately in the ANOVA groups, have
parallel slopes. This is the so-called homogeneity of regression assump-
tion, which requires that the b weights applied to the covariate(s) are rea-
sonably equal across each group. If this assumption is met, the use of a
single average, or “pooled” equation, for all the participants is unreason-
able, creates e scores using a single regression equation that may not fit in
any of the groups, and thus focuses the analysis on outcome scores (i.e., ei

scores) that are an inaccurate distortion for everybody.
In education intervention studies, these slopes involving academic

achievement pretest covariates and posttest Y scores can actually be con-
ceptualized as “rate of learning” curves. When the ANOVA groups were
not randomly created, but instead involved intact groups—especially
when one group was a compensatory group being given a remedial inter-
vention such as Head Start—the homogeneity of regression assumption
may be difficult, if not outright impossible, to meet.

Using ANCOVA to study intact groups may be appealing, because
when we have intact groups, especially in a compensatory intervention, we
realize that the groups differed at pretest, and something must be done to
take into account these pretest differences. Unfortunately, using
ANCOVA in these situations may lead to “tragically misleading analyses”

11. Multiway and Other Alternative ANOVA Models 355



that actually “can mistakenly make compensatory education look harm-
ful” (Campbell & Erlebacher, 1975, p. 597). Similarly, Cliff (1987)
argued that, “It could be that the relationship between the dependent vari-
able and the covariate is different under different treatments. Such occur-
rences tend to invalidate the interpretation of the simple partial
correlations . . .” (p. 273).

Covariate(s) Data Must Be Extremely Reliable

Statistical corrections require extremely reliable measurement of the con-
trol variables. Score reliability is an important requisite for any statistical
analysis (Thompson, 2003), but “measurement reliability becomes crucial
[emphasis added] . . . in employing statistical partialling operations, as in
the analysis of covariance . . .” (Nunnally, 1975, p. 10).

Unfortunately, too many researchers incorrectly presume that tests are
reliable, and rarely check the reliabilities of the scores actually being ana-
lyzed, as Vacha-Hasse, Henson, and Caruso (2002) reported in their mea-
surement mega-meta-analysis. As Loftin and Madison (1991) emphasized,
“the covariate(s) used must be especially reliable, or one will end up
potentially adjusting sampling error with measurement error, and creating
a mess” (p. 145).

Residualized Dependent Variable Scores
Must Be Interpretable

Some textbook authors have suggested that “adding covariates creates no
real problem” (Keppel & Zedeck, 1989, p. 479). But, on the contrary,
some covariance corrections may result in the analysis of a dependent vari-
able that no longer makes any sense.

Statistical corrections remove parts of the dependent variable, and
then analyze whatever is left, even if whatever is left no longer makes any
sense. At some point we may no longer know what we are analyzing. As
Thompson (1991b) suggested,

Consider an actual dissertation . . . in which the posttest [reading] achieve-
ment variable was “corrected” using four pretest [reading] achievement
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subtests. What was the posttest achievement variable after this correc-
tion? . . . [W]hatever it was, this student probably wasn’t analyzing achieve-
ment after this nuclear weapon covariance correction. (p. 508)

As Cliff (1987) explained, because “this [statistical correction] is really a
form of regression, inferences become slipperier as the variables
[covariates] increase” (p. 278) in number.

Some Key Concepts

Interaction effects are of considerable importance in social science
research, because few if any interventions (e.g., instructional methods,
drugs) work equally well for all people (Cronbach, 1957, 1975). ATI
and related designs help us to determine for whom different interven-
tions may be most effective.

Nonfactorial analyses exclude the testing of one or more omnibus
hypotheses. Researchers select nonfactorial analyses in some cases
because a main effect may not be malleable, or because a higher-order
interaction may not be readily interpretable. For some data, factorial
analyses have more power, but for other data, nonfactorial analyses
are more powerful.

Just as people may be randomly sampled to yield generalizable
results, levels of ways may be randomly sampled in a random- or
mixed-effects model. Such designs achieve greater generalizability
beyond the sampled levels, but due so at the cost of less statistical
power for a given sample size.

ANCOVA is a statistical method that may be used to adjust sta-
tistically for preintervention differences in groups. When enough par-
ticipants are randomly assigned to groups in a true experiment, the
law of large numbers functions efficiently, and such fine tuning will
usually be unnecessary. When intact groups are used in a quasi-
experiment (i.e., no random assignment to groups), adjustment for
preintervention differences may be desperately needed, but ANCOVA
is less likely to be appropriate in exactly these cases. ANCOVA
requires that the homogeneity of regression assumption is met, other-
wise invoking a single regression equation across groups may result in
adjustments that are inappropriate for all groups. The assumption
may be most difficult to meet when the intact groups were created
using eligibility rules (e.g., intervention is available only if academic
performance is at least one grade level below average) as part of com-
pensatory or remedial efforts (Campbell & Erlebacher, 1975). Also,
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the use of multiple covariates is possible, but may result in the analysis
of an uninterpretable outcome variable.

��� Reflection Problems ���

1. In a balanced three-way ANOVA, all seven omnibus hypotheses are inher-

ently perfectly uncorrelated. This is worst-case as regards the

experimentwise error rate. What will αEXPERIMENTWISE be? What will hap-

pen to αEXPERIMENTWISE if a nonfactorial analysis is conducted?

2. Create hypothetical data for a balanced 3 × 2 design. For heuristic pur-

poses, use SPSS to analyze the data using (a) a fixed-effects model, (b) a

random-effects model, (c) a mixed-effects model with the A way declared

to be random and the B way declared to be fixed, and (d) a mixed-effects

model with the B way declared to be random and the A way declared to

be fixed. Which summary table entries are the same, and which differ

across the analyses? Do all the output results use the correct error terms

for the F calculations?
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12

The General
Linear Model (GLM)

ANOVA via Regression

I
n one of his several seminal articles, Cohen (1968) noted that ANOVA
and ANCOVA are special cases of multiple regression analysis, and
argued that in these realizations “lie possibilities for more relevant and
therefore more powerful exploitation of research data” (p. 426). In a

book published shortly thereafter, Kerlinger and Pedhazur (1973) argued
that multiple regression analysis

can be used equally well in experimental or non-experimental research. It can
handle continuous and categorical variables. It can handle two, three, four, or
more independent variables. . . . Finally, as we will abundantly show, multi-
ple regression analysis can do anything the analysis of variance does—sums
of squares, mean squares, F ratios—and more. (p. 3)

Indeed, Maurice Tatsuoka (1975) noted that:

In the early writing of R. A. Fisher, the originator of ANOVA, it is evident
that he initially approached the problem of multi-group significance testing
via the multiple linear regression method—which, as we shall soon see, is
essentially what the [univariate] general linear model is. It was only (or at
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least mainly) because the calculations needed for the multiple-regression
approach were practically infeasible for all but the simplest designs in the
pre-computer days, that Fisher invented the MSb/MSw approach. . . . [A]ll
conceivable designs in ANOVA and ANCOVA could be handled by a single
general linear model, differing from design to design only in minute technical
detail. (pp. 1–2)

The present chapter has two important foci: (a) presenting the basic
concepts of the general linear model (GLM), for the heuristic purpose of
showing the linkages among statistical analyses, so that we may under-
stand conceptually the similarities and the dissimilarities of these analyses,
and (b) describing the practical reasons for using regression approaches in
conducting the analysis of variance. The heuristic lessons of the chapter
reinforce key messages that all analyses (a) are correlation, (b) yield effect
sizes analogous to r2, and (c) apply weights to measured variables to yield
scores on latent variables that are actually the focus of the analysis.

Two implications of the GLM are, first, that effect sizes can (and
should) be presented and interpreted for all analyses. Second, although
there are important differences in experimental versus nonexperimental
designs (Raudenbush, 2005; Rubin, 1974), because all analyses are corre-
lational and part of a single analytic family, there is no justification for
unilaterally preferring ANOVA over other models. In particular, it will be
suggested that the mutilation of intervally-scaled predictor variables into
nominal scale in order to perform ANOVA generally should be avoided.

��� Planned Contrasts

Regression Subsumes ANOVA and the Two-Sample t Test

Table 12.1 presents a small one-way dataset that will be used to illustrate
the fact that regression subsumes ANOVA (and by implication the two-
sample t test) as a special case. This means that regression can be used to
conduct ANOVA (or the two-sample t test, because for this problem
tCALCULATED

2 = FCALCULATED), but not vice versa. These data are modeled on
the example provided by Tucker (1991).

For the purposes of this heuristic demonstration, we will use here the
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five contrast variables, A1 through A5, as a set in place of the group mem-
bership variable, LEVEL. These five variables merely reexpress exactly the
same information expressed in “LEVEL.” For example, saying that a par-
ticipant had contrast variable scores of {–1, –1, –1, –1, –1} is merely
another way of saying that a participant was in level 1 of the A way. Or,
saying that a participant had contrast variable scores of {0, 0, 0, 0, 5} is
merely another way of saying that the participant was in level 6 of the A
way. Indeed, the R2 (and R) of the five contrast variables with LEVEL is
100%, reflecting the fact that the five contrast variables as a set contain no
more (and no less) information than that contained in LEVEL.

If we perform a regression analysis of these data using SPSS, we will
obtain the summary table presented in Table 12.2. The relevant SPSS com-
mand syntax is

REGRESSION VARIABLES=dv a1 a2 a3 a4 a5/
DEPENDENT=dv/ENTER a1 a2 a3 a4 a5 .

This is exactly the same summary table that will result from performing
ANOVA using only the variables DV and LEVEL. Clearly, ANOVA can be
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TABLE 12.1. Orthogonal Contrast Variables for a One-Way ANOVA

SPSS variable names

Case DV LEVEL A1 A2 A3 A4 A5

1 11 1 –1 –1 –1 –1 –1
2 21 1 –1 –1 –1 –1 –1
3 10 2 1 –1 –1 –1 –1
4 20 2 1 –1 –1 –1 –1
5 10 3 0 2 –1 –1 –1
6 20 3 0 2 –1 –1 –1
7 10 4 0 0 3 –1 –1
8 20 4 0 0 3 –1 –1
9 10 5 0 0 0 4 –1

10 20 5 0 0 0 4 –1
11 31 6 0 0 0 0 5
12 41 6 0 0 0 0 5

Note. The six levels of the balanced (n in each cell is 2) one-way design are university academic
classifications: 1 = freshmen, 2 = sophomores, 3 = juniors, 4 = seniors, 5 = masters students,
and 6 = doctoral students.



performed using regression, and is both (a) a special case of the univariate
GLM, regression, and (b) is a correlational analysis, even though mean
differences are being tested.

This does not mean that regression can test only mean differences, but
does mean that regression can be used to test mean differences. The notion
that there are two schools of analyses, experimental and correlational,
died with Cohen’s (1968) article, if not with Cronbach’s (1957) presiden-
tial address. There clearly are different research designs (Thompson et al.,
2005), but univariate parametric analyses, such as ANOVA, ANCOVA,
and t tests, are all special cases of multiple regression.

Testing Planned Contrasts

Aside from the important heuristic value of understanding that all analy-
ses are correlational, yield r2-type effect sizes, and apply weights to mea-
sured variables to estimate latent variable scores, there are also important
practical reasons in some cases for conducting ANOVA via regression.
The Table 12.1 data will also be used to illustrate this application.

In Chapter 10, I explained the use of omnibus ANOVA tests, followed
by post hoc tests when necessary. The alternative ANOVA approach
eschews entirely the use of either omnibus tests, or post hoc tests. Table
12.3 presents the various synonyms used to refer to this alternative ana-
lytic strategy.

Planned nontrend contrasts are variables created to test specific
hypotheses about differences in means. In applied research, planned con-
trasts are almost always created subject to the restriction that the contrast
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TABLE 12.2. One-Way ANOVA Omnibus Test Summary Table

Source SOS df MS FCALCULATED pCALCULATED η2

H0: µFr = µSo = µJr = µSr = µMa = µDoc 722.667 5 144.533 2.891 0.114 70.66%
Within 300.000 6 50.000
Total 1022.667 11 92.970

Note. “Fr” = freshmen, “So” = sophomores, “Jr” = juniors, “Sr” = seniors, “Ma” = masters, students; and
“Doc” = doctoral students.



variables are perfectly uncorrelated. Orthogonal planned contrasts are
uncorrelated variables created to test perfectly uncorrelated hypotheses.
Another form of orthogonal planned contrasts, trend or polynomial
orthogonal contrasts, will be explained momentarily.

Whenever any orthogonal planned contrasts are used, they partition
the omnibus sum of squares for a main or interaction effect into
nonoverlapping variance partitions. Thus, because these partitions are
nonoverlapping, the sum of the SOS partitions created using orthogonal
planned contrasts always exactly equals the omnibus SOS for a given
effect. Thus planned contrasts provide more specific information about
dynamics within ANOVA data, but do not change the overall effect sizes
for the omnibus effects.

Because planned contrasts do not require an omnibus test, we may
test interesting contrasts that might not be testable if an omnibus hypothe-
sis was not rejected. And because when we use planned contrasts we do
not test all possible simple or simple and complex contrasts, thus requiring
a potentially large Bonferroni-type correction, planned contrasts can have
more power than post hoc tests. Planned contrasts do not require us to test
contrasts that are not of interest to us, or to lessen statistical power as the
price for conducting the full suite of post hoc comparisons.

For a given omnibus SOS, planned contrasts will cut this SOS into
nonoverlapping components, iff the planned contrast knives are orthogo-
nal. Using orthogonal planned contrasts has the appealing feature that
nonoverlapping sums of squares simplifies our interpretation as to where
predictive credit originates.
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TABLE 12.3. Synonymous Names
for Planned Contrasts

Phrase Elements

First Second

planned contrast
a priori comparison
focused test



Recall from Chapter 5 that

rXY = COVXY / (SDX * SDY) (5.1)

where COVXY is also a description of bivariate relationship, and can be
computed as

COVXY = (Σ(Xi – MX)(Yi – MY)) / (n – 1) (5.2)

Clearly, a necessary and sufficient condition for rXY to equal zero is for
COVXY to equal zero, as long as SDX and SDY are nonzero, such that rXY is
defined (i.e., can be computed). And the COVXY will equal zero as long as
the numerator of Equation 5.2, (Σ(Xi – MX)(Yi – MY)), equals zero.

Traditionally, contrast variables as tests of specific hypotheses are cre-
ated such that their means (and sums) are zero. Thus, the contrast vari-
ables are also deviation scores (as are any scores where M = 0), and
Equation 5.2 can be rewritten as

COVXY = (Σ(xiyi)) / (n – 1) (5.3)

Moreover, COVXY and rXY will both be zero for any two variables for
which Σ(xiyi) = 0.

As noted in Table 12.4, the 5 contrast variables all have means (and
sums) of zero. Furthermore, the sums of the crossproducts for all 10
pairwise combinations are all zero. This is illustrated in Table 12.4 for 5
of the 10 possible pairwise combinations ([5(5 – 1)] / 2) of the 5 orthogo-
nal planned contrasts. All deviation score crossproducts for the tabled 5
pairs sum to zero.

Thus, all the planned contrasts in Table 12.1 are orthogonal
(uncorrelated). Therefore, they will cut the omnibus SOS for the main
effect with df = 5 into five nonoverlapping sums of squares, each with 1
degree of freedom. We can subdivide any omnibus sums of squares fur-
ther, as long as the df of the omnibus effect is greater than 1. Once the
degrees of freedom for a variance partition equals 1, we cannot further
subdivide the SOS information about individual differences.

What are the hypotheses tested by the tabled orthogonal nontrend
contrasts? In effect, we are applying the contrast variable scores to the
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group membership variable (e.g., LEVEL), and doing so is also equivalent
to applying the contrast variable scores to the means. On a given contrast
variable, whenever the score is zero, the dependent variable scores of par-
ticipants in levels for which a zero is applied are not part of the mean dif-
ference being tested. For example, the A1 contrast does not involve levels
3 through 6 of the A way, but does involve the outcome variable scores of
the four participants in levels 1 and 2.

The nontrend contrast variables each involve the two means for par-
ticipants with nonzero contrast variable scores. Each contrast variable
involves two different numbers. The contrast variables test the equality of
the two means defined by the two nonzero contrast variable scores. For
example, the A1 contrast tests the simple contrast H0 that the outcome
variable mean of the n = 2 participants who were freshmen equals the out-
come variable mean of the n = 2 participants who were sophomores.

The remaining orthogonal nontrend contrasts all test complex con-
trasts. For example, the A5 contrast tests the complex contrast H0 that the
outcome variable mean of the n = 2 participants who were doctoral stu-
dents equals the outcome variable mean of the n = 10 participants who
were any classification except doctoral students.
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TABLE 12.4. Table 12.1 Contrast Variables
and Selected Deviation Crossproducts

Contrasts Deviation cross-products

Case A1 A2 A3 A4 A5 a1*a2 a1*a3 a1*a4 a1*a5 a4*a5

1 -1 -1 -1 -1 -1 1 1 1 1 1
2 -1 -1 -1 -1 -1 1 1 1 1 1
3 1 -1 -1 -1 -1 -1 -1 -1 -1 1
4 1 -1 -1 -1 -1 -1 -1 -1 -1 1
5 0 2 -1 -1 -1 0 0 0 0 1
6 0 2 -1 -1 -1 0 0 0 0 1
7 0 0 3 -1 -1 0 0 0 0 1
8 0 0 3 -1 -1 0 0 0 0 1
9 0 0 0 4 -1 0 0 0 0 -4

10 0 0 0 4 -1 0 0 0 0 -4
11 0 0 0 0 5 0 0 0 0 0
12 0 0 0 0 5 0 0 0 0 0

Sum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0



The planned contrasts are tested by executing the SPSS syntax:

REGRESSION VARIABLES=dv a1 a2 a3 a4 a5/
DEPENDENT=dv/ENTER a1/ENTER a2/ENTER a3/

ENTER a4/ENTER a5 .

Note that because the planned contrasts are perfectly uncorrelated, the
order of entry into the regression model is irrelevant. The sum of squares
that each contrast hypothesis will explain will be identical for any combi-
nation of entry orders. However, the contrast hypotheses must be entered
one at a time, so that the unique explanatory contribution of each hypoth-
esis can be determined.

Portions of the regression output are then consulted to use Excel, or
another spreadsheet, to build an ANOVA summary table. The sources in
the summary table at the outset can be listed as A1 (or H0: µFRESHMEN =
µSOPHOMORES), A2 (or H0: µFRESHMEN, or SOPHOMORES = µSOPHOMORES)= µJUNIORS), A3,
A4, A5, ERROR, and TOTAL. The degrees of freedom, known from the
model even before the analysis is conducted, are 1, 1, 1, 1, 1, 6, and 11,
respectively.

At the entry of the first contrast variable, A1, the SOSREGRESSION is
1.000 (reflecting the fact that the means of 16.0 and 15.0 are not equal).
This SOS from the SPSS output is entered in the summary table for the A1
contrast. At the entry of the second contrast variable, A2, the cumulative
sum of squares explained is 1.333. This means that the SOS for the second
contrast hypothesis alone is 0.333 (1.333 – 1.000). The sums of squares
for the remaining contrast hypotheses are computed in an analogous man-
ner, by subtraction.

After all the contrast variables are entered, the SOSERROR, the dfERROR,
and the MSERROR are then correct, and can be read off the printout and
entered into the spreadsheet. The SOSTOTAL can be computed at any entry
point, because the SOSTOTAL is fixed for a given dataset.

Then the SPSS output is discarded, and the remaining entries in the
summary table are computed using Excel. The resulting summary table is
presented in Table 12.5. Notice that all we have done is to partition the
omnibus SOS (i.e., 733.667 in Table 12.3) into five nonoverlapping com-
ponents. And the SOSERROR and SOSTOTAL remain unaltered by the decision
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to test planned contrasts in place of omnibus tests followed by post hoc
tests, if needed.

However, the NHSST decisions are not the same across the two ana-
lytic choices. The Table 12.3 omnibus test was not statistically significant
at α = 0.05 (pCALCULATED = 0.114). Furthermore, even if Tukey and Scheffé
post hoc tests were inappropriately conducted, even though the omnibus
hypothesis was not rejected, no mean differences are statistically signifi-
cant in these post hoc tests either.

On the other hand, the last contrast null hypothesis (i.e., the H0 that
the outcome variable mean of the n = 2 participants who were doctoral
students equals the outcome variable mean of the n = 10 participants who
were any classification except doctoral students) was rejected (pCALCULATED

= 0.009). Indeed, this planned contrast hypothesis would be rejected even
if a Bonferroni correction was invoked, and the contrast null hypothesis
was tested at pCRITICAL* = 0.05 / 5 = 0.01. Clearly, planned contrasts can
have more statistical power against Type II error, as this heuristic example
so powerfully demonstrates!

However, for any design involving only two-level ways, no power
advantages accrue for invoking planned contrasts. For a two-level way,
the only possible contrast variable is {–1, 1} or {1, –1}, both of which test
exactly the same null hypothesis. This contrast tests the equality of two
means, or the omnibus hypothesis. So, for example, for a 2 × 2 × 2 × 2
design, invoking either omnibus or planned contrasts yields exactly identi-
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TABLE 12.5. Planned Contrast Tests

Source SOS df MS FCALCULATED pCALCULATED η2 η

A1 1.000 1 1.000 0.020 0.892 0.10% 0.03127
A2 0.333 1 0.333 0.007 0.938 0.03% 0.01805
A3 0.167 1 0.167 0.003 0.956 0.02% 0.01276
A4 0.100 1 0.100 0.002 0.966 0.01% 0.00988
A5 721.067 1 721.067 14.421 0.009 70.51% 0.83969

Error 300.000 6 50.000
Total 1022.667 11 92.970

Note. A1 tests µFreshmen = µSophomores; A2 tests µFreshmen, or Sophomores = µJuniors; A3 tests µFreshmen, Sophomores,

or Juniors = µSeniors; A4 tests µFreshmen, Sophomores, Juniors, or Seniors = µMasters; A5 tests µFreshmen, Sophomores, Juniors,

Seniors, or Masters = µDoctoral.



cal results for every effect in a factorial analysis. For this design, there are
no power advantages (or disadvantages) for using a regression model to
perform the analysis. And there are no choices about what hypotheses to
test for each effect.

Nevertheless, in general, for research conducted on topics for which
prior research or theory, or both, can support reasonable expectations,
planned contrasts may be very useful. First, if expectations pan out,
planned contrasts have more power against Type II error, as illustrated in
our example. Second, and perhaps more importantly, because the number
of planned orthogonal contrasts is capped for a main effect at k – 1,
researchers must thoughtfully select the hypotheses they will test. And
thoughtfulness is absolutely the most critical ingredient in conducting
high-quality scholarship.

Constructing Nontrend Planned Contrasts

We construct orthogonal planned contrasts for main effects such that the
number of planned contrasts is less than or equals the number of groups
minus 1. One nontrend hypothesis tests a simple contrast, the second con-
trast tests the mean outcome score of two groups versus the mean of a
third group, and so forth.

We can create the nontrend contrasts in any order. For example, we
may be most certain that one group’s mean will differ from the combined
mean of all other participants, and we could define this complex contrast
first. If this is the fifth contrast, we assign the one group contrast scores of
5, and all other participants –1. In our example, the last contrast tested the
mean of group 6 versus the mean of everyone else combined. We could
instead have used this contrast to test any one group (e.g., freshmen) ver-
sus the remaining groups.

As we consecutively create the contrasts in any order, once we have
created k – 2 contrasts, the last contrast is fixed. So we have no discretion
in creating the last orthogonal nontrend contrast, whichever contrast we
elect to create last.

Once the contrasts are selected, the contrast variables should have
means (and sums) of zero, and the crossproducts of all pairs of contrasts
should sum to zero. The orthogonal nontrend contrasts should also have a
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pattern in which the positive number equals the number of the contrast
variable. If we order the contrasts, as in Table 12.1, such that the simple
contrast is first, and the contrasts each successively involve one additional
level, there will also be a pattern in which any participant with a nonzero
contrast variable score on a given contrast has –1 contrast scores on all
contrasts to the right of the given orthogonal nontrend contrast.

Logistically, there are two ways to create the contrast variable scores
in an SPSS analysis. First, we can literally type the contrast variable scores
into the datafile. Second, we can input only dependent variable scores and
group membership information for each way, and then invoke a series of
IF and COMPUTE statements to construct the contrast variable scores. This
will save us a lot of work, especially if we have a lot of participants in each
cell of the design.

Figure 12.1 provides the SPSS syntax used to analyze the Table 12.1
data. Note that only the outcome variable scores (DV) and the group
membership information for the single way (LEVEL) are input, and that
COMPUTE and IF statements are used to create the orthogonal nontrend
contrasts.

Let’s consider another example. A researcher is conducting a bal-
anced, factorial 4 × 3 ANOVA using nontrend contrasts. For a 4 × 3 facto-
rial design, there will be a total of (4 × 3) – 1 degrees of freedom for
explained effects. Each contrast hypothesis requires 1 degree of freedom.
So, for this model there will be 11 orthogonal nontrend contrast variables
(i.e., cells minus 1, or [4 × 3] – 1).

Only the outcome scores (DEP_VAR) and cell information (WAY_A
and WAY_B) are input in the dataset. The contrast variables for the A way
might be created as

COMPUTE A1 = 0 .
COMPUTE A2 = 0 .
COMPUTE A3 = 0 .
IF (WAY_A EQ 1) A1 = –1 .
IF (WAY_A EQ 4) A1 = 1 .
IF (A1 NE 0) A2 = –1 .
IF (WAY_A EQ 3) A2 = 2 .
IF (A2 NE 0) A3 = –1 .
IF (WAY_A EQ 2) A3 = 3 .
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The contrast variables for the B way might be created as

COMPUTE B1 = 0 .
COMPUTE B2 = 0 .
IF (WAY_B EQ 2) B1 = –1 .
IF (WAY_B EQ 3) B1 = 1 .
IF (B1 NE 0) B2 = –1 .
IF (WAY_B EQ 1) B2 = 2 .
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FIGURE 12.1. SPSS syntax used to analyze the Table 12.1 data



The orthogonal contrast variables for the interaction effects, requiring a
total of 6 degrees of freedom ([4 – 1][3 – 1]), can be created as

COMPUTE A1_B1 = A1 * B1 .
COMPUTE A2_B1 = A2 * B1 .
COMPUTE A3_B1 = A3 * B1 .
COMPUTE A1_B2 = A1 * B2 .
COMPUTE A2_B2 = A2 * B2 .
COMPUTE A3_B2 = A3 * B2 .

Are these contrasts orthogonal? What hypotheses are tested by the
five main effect contrasts? You might benefit from creating hypothetical
outcome variable scores for this problem, and then conducting the analy-
sis using the REGRESSION procedure.

Selecting Nontrend Orthogonal Contrasts

The potentially greater power of planned contrasts is not an inherent func-
tion of all planned contrasts. Instead, this power is a function of our
thoughtful selection of contrasts being informed by prior research, or the-
ory, or both. Greater statistical power will not usually occur if planned
contrasts are created randomly, or thoughtlessly.

One implication is that planned contrasts should not be used in new
areas of inquiry where theory has not been elaborated. In such circum-
stances, the use of omnibus tests followed by post hoc tests, if needed, is
the appropriate exploratory procedure. Thus, omnibus tests have an
important role in social science, even though planned contrasts can be very
useful for some research problems.

The study by Carr and Thompson (1996) provided an example of the
planned contrasts model with an applied research problem. The research-
ers were exploring the nature of reading learning disabilities. One model
posits that people with learning disabilities (LD) are not qualitatively dif-
ferent from non-LD persons, and that disabilities merely reflect develop-
mental delays.

The researchers reasoned from this perspective that (a) sixth-grade LD
readers should not differ substantially in reading proficiency from fourth-
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grade non-LD readers, but (b) sixth-grade non-LD readers should differ
substantially in reading proficiency from both sixth-grade LD readers and
fourth-grade non-LD readers. For this three-level one-way design, the
researchers used the nontrend orthogonal contrasts:

A1 A2 Group

–1 –1 sixth-grade LD readers
1 –1 fourth-grade non-LD readers
0 2 sixth-grade non-LD readers

In other words, the researchers expected (and obtained) small effect
sizes and large pCALCULATED values for the A1 planned contrast. And the
researchers expected (and obtained) large effect sizes and small pCALCULATED

values for the A2 planned contrast. The beauty of the analysis is that the
researchers were able to test theoretical expectations about when effects
should be small, as well as when effects should be large, all in the same
study!

Using Bonferroni Corrections in a Planned Contrast Context

By tradition, researchers typically do not invoke the Bonferroni correction
when using orthogonal planned contrasts, even though experimentwise
error rate inflation is at its maximum whenever the hypotheses being
tested are perfectly uncorrelated. The rationale for this decision involves
the number of contrasts being tested.

In a six-level one-way design evaluating the omnibus hypothesis and
then post hoc tests, there are a huge number of simple and complex con-
trasts being tested post hoc. Some correction for experimentwise error rate
inflation seems essential when conducting post hoc tests, and the correc-
tion is built into the Tukey or Scheffé post hoc analyses.

However, in the alternative analysis, a maximum of only five orthogo-
nal planned contrasts can be conducted with this design. So, when planned
contrasts are tested, experimentwise error rate inflation is somewhat
capped as a function of being limited to testing only a few contrasts. For a
main effect, no more than k – 1 contrasts can be tested.
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The fact that, traditionally, researchers do not invoke the Bonferroni
correction when testing planned contrasts does not mean that doing so
would be unreasonable. For more discussion of this issue, and on the use
of nonorthogonal planned contrasts, see Thompson (1994c).

Using Latent Variable Scores in ANOVA

A brief comment on the implicit presence of weights and latent variables in
ANOVA is also warranted to flesh out the final general linear model link-
ages of regression and ANOVA. The point is conceptual rather than an
argument that estimating ANOVA �Y i scores usually has important practi-
cal value.

Note that when we invoke orthogonal planned contrasts, we essen-
tially are in a Case #1 regression situation (i.e., multiple, perfectly-
uncorrelated predictors). And in Case #1, the beta weights for a regression
model equal the rs of each predictor with the Yi scores.

Table 12.5 presents the η2 and η values for each of the five orthogonal
planned contrast variables associated with the analysis of the Table 12.1
data. As presented in the Figure 12.1 SPSS syntax, the Table 12.5 η values
analogous to r values can be used as β weights to compute the �Y i scores.

First, we reexpress the five orthogonal planned contrasts in z-score
form. We can do this either by using COMPUTE statements, or by invoking
the SPSS command:

DESCRIPTIVES VARIABLES=dv a1 to a5/SAVE .

We then use the Table 12.5 η values as β weights in the syntax to create
the two ANOVA latent variable scores:

COMPUTE e = zdv – yhat .
PRINT FORMATS yhat e (F8.5) .
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COMPUTE yhat=(–.031270 * za1) + (–.018054 * za2) +
(–.012766 * za3) + (–.009889 * za4) + (.839693 * za5) .



Table 12.6 presents the latent variable scores from this ANOVA.
Remember that, in regression, the bivariate

rY × Ŷ = RY × X1,X2 . . . (9.3)

and equivalently that

rY × Ŷ
2 = RY × X1,X2 . . .

2 (9.4)

which suggests an analogous linkage elsewhere in the general linear
model. If we use the SPSS CORRELATIONS command to obtain the Pearson
product–moment correlation between the ZDV (or the DV scores) and the
ANOVA YHAT scores, we obtain r = 0.8406. As expected, the squared
value of this correlation coefficient, 0.84062 = 70.66%, equals the omni-
bus ANOVA η2 (i.e., 722.67 / 1022.67 = 70.66%), as reported in Table
12.2.

Furthermore, for regression we learned that the SOS of the �Y i scores
equals the SOSEXPLAINED. The same truism applies in ANOVA. Here we are
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TABLE 12.6. Latent Variable Scores for the Table 12.1 ANOVA Data

SPSS variable

Case/statistic DV ZDV YHAT E

1 11 –0.795 –0.276 –0.518
2 21 0.242 –0.276 0.518
3 10 –0.899 –0.380 –0.518
4 20 0.138 –0.380 0.518
5 10 –0.899 –0.380 –0.518
6 20 0.138 –0.380 0.518
7 10 –0.899 –0.380 –0.518
8 20 0.138 –0.380 0.518
9 10 –0.899 –0.380 –0.518

10 20 0.138 –0.380 0.518
11 31 1.279 1.798 –0.518
12 41 2.316 1.798 0.518

M 18.667 0.000 0.000 0.000
SOS 1022.667 11.000 7.773 3.220
SD2 92.970 1.000 0.707 0.293
SD 9.642 1.000 0.841 0.541



using β weights, so we are predicting zY rather than Yi scores. The SOS of
the n = 12 zY scores is, of course, 11.000, as reported in Table 12.6. The
SOS of the ANOVA �Y i scores, reported in Table 12.6, is 7.773. The omni-
bus ANOVA η2 (i.e., 70.66%) reported in Table 12.2 also equals 7.773 /
1.000, as expected.

��� Trend/Polynomial Planned Contrasts

In the special case in which (a) a way is quantitative and (b) the levels are
equally spaced, researchers may elect to use trend or polynomial contrasts.
Nontrend planned contrasts test whether two means are equal. Trend/
polynomial planned contrasts do not each test whether two means are
equal but instead test whether the means across the levels form a certain
pattern (e.g., a line, a parabola).

In a two-way design, if both the A way and the B way are quantitative
and their levels are equally spaced, trend contrasts can be used with the A
way only, with the B way only, with both, or with neither. And if trend
contrasts are used for either or both ways, all the contrast variables,
including those for interaction effects, will be uncorrelated as long as the
design is balanced.

Table 12.7 presents orthogonal polynomial contrasts that can be used
with a three-level, four-level, or five-level way. Contrasts are not presented
for a two-level way, because for a two-level way only one contrast is possi-
ble, and that contrast must test the omnibus hypothesis. Also, a two-level
way cannot create patterns of means other than a line, even if the way is
quantitative and the levels are equally spaced, because two points inher-
ently define a line, and no nonlinear patterns can be created by only two
points in a Cartesian space. The interested reader will confirm that the
tabled contrasts are orthogonal.

Figure 12.2 presents a plot of the patterns being tested by the four
orthogonal polynomial contrasts for a five-level way. The linear contrast,
{–2, –1, 0, 1, 2}, defines a straight line in Figure 12.2. The quadratic con-
trast, {2, –1, –2, –1, 2}, creates a parabola with one bend, in the middle of
the plot. The cubic contrast, {–1, 2, 0, –2, 1}, defines a line with two
bends, both equidistant from the boundaries of the plot. The quartic con-
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trast, {1, –4, 6, –4, 1}, defines a line with three bends, or a shape resem-
bling the letter W.

When we are fitting orthogonal trend contrasts to our data, we are
testing the fit of the pattern of the contrast to the fit of the pattern in the
means on the quantitative way. For example, the study might involve an
outcome of psychological adjustment, with the way being five equidistant
durations of therapy sessions (e.g., 40, 45, 50, 55, and 60 minutes). Or,
the study might involve a drug dosage investigation with an outcome of
the joint mobility of arthritis patients, each given either 500, 600, 700,
800, or 900 milligrams of aspirin. We are interested in seeing whether
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TABLE 12.7. Selected Polynomial/Trend Orthogonal Contrasts

Levels

Levels Contrast 1 2 3 4 5

3 Linear –1 0 1
Quadratic 1 –2 1

4 Linear –3 –1 1 3
Quadratic 1 –1 –1 1
Cubic –1 3 –3 1

5 Linear –2 –1 0 1 2
Quadratic 2 –1 –2 –1 2
Cubic –1 2 0 –2 1
Quartic 1 –4 6 –4 1

FIGURE 12.2. Plots of polynomial contrast variables for a five-level way



greater dosages linearly produce successively smaller or larger outcome
means, or whether there are curvilinear reaction patterns across dosages.

When we use the linear contrast variable, which is an upward sloping
line in Figure 12.2, we are not testing whether the means define an upward
sloping line with a given slope, or even an upward versus a downward
sloping line. Instead, we are testing whether the pattern of the means has
the same basic character (not direction or orientation) as the polynomial
contrast. So, the linear contrast tests whether the means either progres-
sively and incrementally go up, or progressively and incrementally go
down.

By the same token, the quadratic pattern in Figure 12.2 defines a V
shape. But the quadratic contrast is not testing whether the pattern of the
means has this particular V shape, or indeed any V shape. Instead, we are
testing whether the pattern of the means either (a) goes down, and corre-
spondingly then up, with the single pattern bend in the middle, or (b) goes
up, and correspondingly then down, again with the single pattern bend in
the middle.

Table 12.8 presents a heuristic dataset for a five-level quantitative
way. For these data, the means have the pattern of {10, 20, 30, 25, 20}.
Here we will test whether the means create a linear, a quadratic, or some
other pattern. For heuristic purposes, we will not break the omnibus sum
of squares into four subcomponents; instead we will break the omnibus
SOSEXPLAINED only into three subcomponents, one of which will have two
degrees of freedom. Of course, for comparative purposes, you are encour-
aged to perform an alternative analysis with all four possible orthogonal
polynomial contrasts.

Table 12.9 presents the results from an omnibus ANOVA test. This
table is presented only for heuristic comparative purposes. In actual
research, one always uses either omnibus tests with post hoc tests, if
needed, or planned contrasts. However, the Table 12.9 omnibus results
will later be used to confirm that the planned contrast analysis does not
impact the error or total variance partitions, and only subdivides the
SOSEXPLAINED into nonoverlapping sums of squares associated with each
tested pattern of the five means.
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We conduct the analysis the same way we conducted the analysis for
the nontrend orthogonal contrasts. We can use the SPSS syntax:

ENTER linear/ENTER quadratc/ENTER cubic quartic .

We use the output to compute the five sums of squares of interest in our
analysis. For example, the SOSLINEAR, after the linear contrast variable is
entered, is 187.50. After the quadratic contrast is entered second, we con-
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REGRESSION VARIABLES=dv linear quadratc cubic quartic/

TABLE 12.8. Orthogonal Polynomial Data
for One-Way Five-Level ANOVA

SPSS variable names

Case DV LEVEL LINEAR QUADRATIC CUBIC QUARTIC

1 9 1 –2 2 –1 1
2 10 1 –2 2 –1 1
3 11 1 –2 2 –1 1
4 19 2 –1 –1 2 –4
5 20 2 –1 –1 2 –4
6 21 2 –1 –1 2 –4
7 29 3 0 –2 0 6
8 30 3 0 –2 0 6
9 31 3 0 –2 0 6

10 24 4 1 –1 –2 –4
11 25 4 1 –1 –2 –4
12 26 4 1 –1 –2 –4
13 19 5 2 2 1 1
14 20 5 2 2 1 1
15 21 5 2 2 1 1

TABLE 12.9. One-Way ANOVA Omnibus Test of Table 12.6 Data

Source SOS df MS FCALCULATED pCALCULATED η2

Between 660.00 4 165.00 165.00 0.000000004 98.51%
Within 10.00 10 1.00
Total 670.00 14 47.86



sult the output and perform a subtraction of the cumulative SOSEXPLAINED

minus the SOSLINEAR to determine the SOSQUADRATIC, which is 433.93.
After the sums of squares are computed, we then use Excel to compute

the remaining elements of the required summary table. Table 12.10 pres-
ents the summary table for these data.

One heuristic digression may be worthwhile. For these data, when the
outcome variable is intervally-scaled, so, too, is the quantitative way.
Therefore, for this special ANOVA case, we could compute the Pearson
product–moment r2 between the outcome variable and the levels of the
quantitative way, using the SPSS CORRELATIONS procedure. Doing so
yields r = 0.5290. The r2 value (i.e., 0.52902 = 27.98%) is remarkably sim-
ilar (i.e., identical) to the η2 value (27.98%) reported for the linear con-
trast in Table 12.10.

The comparison makes two heuristic points. First, the linear contrast
tests for only linear patterns, and the Pearson r only measures linear rela-
tionship, so of course we expect this correspondence. Second, the omnibus
η2 (98.51%) is sensitive to all forms of relationship, which is why the
omnibus η2 is greater than the r2. Linear relationship is only one form of
relationship. Thus, η2 = 98.51% includes the linear component (i.e.,
27.98%), but also all other relationship forms (i.e., 27.98% + 64.77% +
5.76% = 98.51%).

For this hypothetical, small dataset, the effect sizes are huge (i.e.,
cumulatively, almost perfect). Nevertheless, the example illustrates the
best fit of the quadratic effect. Assuming the outcome scores are scaled
such that higher scores are better, such a pattern suggests an optimal dos-
age located near the middle treatment level used in the way. If this way
involved a study of therapy session durations of 40, 45, 50, 55, and 60
minutes, the result would suggest an optimal session length of 50 minutes.
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TABLE 12.10. Polynomial Trend Tests of Table 12.6 Data

Source SOS df MS FCALCULATED pCALCULATED η2

Linear 187.50 1 187.50 187.50 0.000000083 27.98%
Quadratic 433.93 1 433.93 433.93 0.000000001 64.77%
Other 38.57 2 19.29 19.29 0.000369909 5.76%
Within 10.00 10 1.00
Total 670.00 14 47.86



Of course, the effect sizes we have considered are always on the aver-
age. (For an interesting exception, see Grissom, 1994.) Effect sizes (unless
they are perfect) do not mean that the effect was consistent for all partici-
pants. A large but imperfect effect means that an intervention generally
worked in a given fashion for the group as a whole, but for some partici-
pants the optimal treatment may not be as effective, and may even be least
effective.

��� Repeated-Measures ANOVA via Regression

Repeated-measures ANOVA designs repeatedly (at least twice) measure
participants on one or more outcome variables over time. For example, a
drug study might be conducted to evaluate the effects of three
anticholesterol drugs. In a between-subjects design, in which a given par-
ticipant is involved in only one level of the way, 90 participants (30 per
group) might be randomly assigned to take only one of the three drugs for
a month, after which outcome cholesterol scores would be recorded.
Alternatively, in a within-subjects (or repeated measures) design, 30 partic-
ipants would each successively receive each drug, and have cholesterol
outcome scores recorded, over the course of the study.

For example, the three drugs might be administered in a counterbal-
anced order to subgroups of participants. Ten participants might receive
drug A during January, drug B during March, and drug C during May,
having their cholesterol recorded at the end of January, March, and May.
Ten other participants might receive drug B during January, drug C during
March, and drug A during May, having their cholesterol recorded at the
end of each month. Finally, 10 other participants might receive drug C
during January, drug A during March, and drug B during May, having
their cholesterol recorded at the end of each month.

Repeated measures may have two appealing features. First, we may be
able to record the same number of outcome scores (e.g., 30 per drug) with
a repeated-measures design that requires fewer participants than a
between-subjects design (e.g., 30 versus 90 participants). Second,
repeated-measures designs have the appealing feature that each participant
may be exposed to each treatment. This may be important, particularly if
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the sample size is small and includes one or more atypical people. The
influence of outliers may be minimized either by (a) washing out these
influences within a large sample, or (b) including the outliers in every
treatment condition so that outliers do not distort outcome means only for
certain conditions to which they were assigned.

The key issue in deciding whether a repeated-measures design is
appropriate in a given study involves whether or not the performances of
the participants over time are reasonably independent. For example, in a
cholesterol study, with drugs administered every other month over a 5-
month period and with 1 month of no treatment separating the drug
administrations, there is probably not much reason to expect carryover
effects across drug treatments.

But what if the study was an educational intervention designed to
teach first graders how to spell 10 target words? Once a child receives any
instruction, and learns some of the target words, the prior learning will
compromise the ability to detect new impacts when the same words are
retaught. Nevertheless, for some research, repeated-measures designs can
be quite useful.

Table 12.11 presents a heuristic dataset for the simplest possible
repeated-measures design. A multiway repeated-measures design might
involve a within-subjects effect, and one or more between-subjects effects
for which people by choice are not, or simply cannot be, assigned succes-
sively to each condition (e.g., two genders). Here there is only one within-
subjects effect, and no between-subjects effects. Let’s say Table 12.11
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TABLE 12.11. Repeated-Measures ANOVA Data

Test

Participant/statistic 1 2 3 4 Sum Mean

1 5 7 7 8 27 6.75
2 4 5 8 9 26 6.50
3 4 4 4 8 20 5.00
4 3 3 4 8 18 4.50
5 2 2 4 5 13 3.25

Sum 18 21 27 38
Mean 3.60 4.20 5.40 7.60 5.20



involves giving five participants therapy for four weeks, and measuring
psychological adjustment at the end of each week.

We could enter the data into SPSS as a file containing five rows and
four outcome variable scores, T1, T2, T3, and T4, arrayed as the data are
within Table 12.11 but entering only these 5 × 4 = 20 data points. The
required SPSS syntax to yield a repeated-measures ANOVA would be

MANOVA t1 t2 t3 t4
/WSFACTORS test(4)
/PRINT=SIGNIF(UNIV MULTIV AVERF HF GG EFSIZE)
PARAM(ESTIM)
/WSDESIGN=test/DESIGN .

Alternatively, if we wish, we can conduct the repeated-measures
ANOVA using regression. And because the four measurements are quanti-
tative (i.e., time) and equally spaced (i.e., weekly), here we can conduct the
analysis using orthogonal polynomial planned contrasts. The data are
entered as 20 rows, in the format presented in Table 12.12. Using the
method first suggested by Pedhazur (1977), we also enter the sum of each
participant’s four outcome variable scores (e.g., Σ1 = 5 + 7 + 7 + 8 = 27) in
every row for a given participant.

We implement the analysis in SPSS, using the syntax

REGRESSION VARIABLES=dv linear quadratc cubic sum/
DEPENDENT=dv/ENTER sum/ENTER linear/ENTER quadratc/
ENTER cubic .

As before, we use elements from the output to create the summary table in
Excel. The SOSPEOPLE is derived from the entry of the variable “SUM” into
the model. This sum of squares (33.70) reflects the variability within dif-
ferent people across the four measurements.

The cumulative SOS after “LINEAR” is entered is 77.26, which
means that the SOS for the linear pattern in the four outcome means is
43.56 (i.e., 77.26 – 33.70). By successive subtractions, we compute
SOSQUADRATIC to be 3.20, and SOSCUBIC to be 0.04. The residual, or people
× time interaction SOS, is 10.70. After entering these values into Excel, we
discard the SPSS output, and compute the remaining entries in the sum-
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mary table, yielding the results reported in Table 12.13. For a related
example, see Edwards (1985, Ch. 10).

One complication is that we have not taken into account an important
statistical assumption. The sphericity assumption requires that the vari-
ances of the differences between all possible pairs of means must be equal.
The F test (and associated pCALCULATED values) will be inaccurate to the
extent that we violate this assumption.

The initial repeated-measures ANOVA presumes that data perfectly
meet the sphericity assumption. We can attempt to quantify the extent to
which we are violating this assumption, and then use this estimate, called
epsilon (ε), to obtain more accurate pCALCULATED values. One estimate of ε is
the Geisser-Greenhouse correction (Geisser & Greenhouse, 1958), which
is provided by SPSS upon request. For our data, εGG = 0.721. Another esti-
mate was developed by Huynh and Feldt (1976). For our data, εHF =
1.000.
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TABLE 12.12. Repeated-Measures Data with Polynomial Contrasts

SPSS variable names

Row CASE TEST LINEAR QUADRATC CUBIC SUM DV

1 1 1 –3 1 –1 27 5
2 2 1 –3 1 –1 26 4
3 3 1 –3 1 –1 20 4
4 4 1 –3 1 –1 18 3
5 5 1 –3 1 –1 13 2
6 1 2 –1 –1 3 27 7
7 2 2 –1 –1 3 26 5
8 3 2 –1 –1 3 20 4
9 4 2 –1 –1 3 18 3

10 5 2 –1 –1 3 13 2
11 1 3 1 –1 –3 27 7
12 2 3 1 –1 –3 26 8
13 3 3 1 –1 –3 20 4
14 4 3 1 –1 –3 18 4
15 5 3 1 –1 –3 13 4
16 1 4 3 1 1 27 8
17 2 4 3 1 1 26 9
18 3 4 3 1 1 20 8
19 4 4 3 1 1 18 8
20 5 4 3 1 1 13 5



The ε values are used to adjust the degrees of freedom when comput-
ing pCALCULATED values from the FCALCULATED results, subject to the restriction
that the adjusted dfNUMERATOR not be less than 1 and the adjusted
dfDENOMINATOR not be less than the number of participants. For our data, the
uncorrected pCALCULATED value for the linear effect was obtained in Excel by
inputting the F of 48.85 with degrees of freedom 1 and 12:

=FDIST(48.85,1,12)

which yields a pCALCULATED value of 0.00001.
However, if we invoke the Geisser-Greenhouse correction, we instead

input

=FDIST(48.85,1,.721*12)

or, alternatively,

=FDIST(48.85,1,8.652)

and obtain a pCALCULATED value of 0.00011. But for our example, invoking
εHF yields the same pCALCULATED results as the uncorrected results, because
our εHF = 1.000.
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TABLE 12.13. Summary Table for Repeated-Measures
ANOVA with Planned Polynomial Contrasts

Source SOS df MS FCALCULATED pCALCULATED η2

People 33.70 4 8.42
Time 46.80 3 15.60

Linear 43.56 1 43.56 48.85 0.00001 47.76%
Quadratic 3.20 1 3.20 3.59 0.08252 3.51%
Cubic 0.04 1 0.04 0.04 0.83582 0.04%
Within Time (Total – Time) 44.40

People × Time (Within – People) 10.70 12 0.89
Total 91.20 19

Note. The omnibus hypothesis is not tested when planned contrasts are performed, but for heuristic
purposes note that the omnibus FCALCULATED is 17.50 (p = 0.0001).



The εGG is generally lower than εHF, and thus results in a larger correc-
tion of degrees of freedom (i.e., fewer degrees of freedom), less power
against Type II error, and larger pCALCULATED values. Some researchers have
suggested computing ε as an average of εGG and εHF (e.g., J. Stevens, 1996).
Others (cf. Girden, 1992) have suggested using εHF iff εGG is larger than
0.75. For more detail on these decisions, see Tanguma (1999).

Our results suggest a linear effect of therapy over time. Of course, our
conclusions must be limited to 4 weeks of treatment. Our design will not
allow us to conclude that longer durations of therapy will necessarily con-
tinue to lead to incremental improvements in mental health. Our results
also suggest that individual differences due to people (i.e., SOSPEOPLE =
33.70) are noteworthy. We can only estimate these person effects by using
a repeated-measures design in which individuals are measured repeatedly.

��� GLM Lessons

Analysis of variance (ANOVA) has traditionally been among the most
commonly used of all inferential statistical techniques in the behavioral
sciences (Edgington, 1974; Wick & Dirkes, 1973), though a growing trend
favoring the use of regression and general linear model methods has
emerged (Kieffer, Reese, & Thompson, 2001) since Cohen’s (1968) influ-
ential article.

Edgington (1974) reviewed American Psychological Association
research journals and found that 71% of the articles using statistical infer-
ence had employed analysis of variance. He concluded his review by not-
ing that “. . . every one of the journals showed an upward trend in the use
of analysis of variance . . .” (p. 26). Willson (1980) proposed that there
might be a change in techniques used in research articles published
between 1969 and 1978, due to the expansion of educational research
training in the late 1960s. He examined the articles published in American
Educational Research Journal (AERJ) from 1969 to 1978, and he found
little extension of the research tools used—ANOVA and ANCOVA were
included in 56% of the articles.

Goodwin and Goodwin (1985) found that the total percentage of
usage for ANOVA-based techniques decreased to 34.47% in the 189 arti-
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cles that were published in AERJ from 1979 to 1983. Elmore and
Woehlke (1988) found that ANOVA/ANCOVA were still the most fre-
quent research methods utilized in all articles appearing in AERJ, Educa-
tional Researcher, and Review of Educational Research from 1978 to
1987.

Take-Home Messages

In this chapter, several arguments have been presented. First, regression
approaches to ANOVA that invoke planned contrasts have been recom-
mended for many designs in which one or more ways have more than two
levels. Planned contrasts (a) may have more power against Type II error, iff
researchers have a reasonable basis for formulating specific, nonomnibus
hypotheses, and (b) tend to force researchers to thoughtfully select
hypotheses as against testing every possible mean difference. Second,
omnibus tests followed by post hoc tests, if needed, are perfectly appropri-
ate for research situations in which prior research or theory is not avail-
able.

We will now turn to a major, third implication of the heuristic demon-
stration that ANOVA and the two-sample t test are special cases of the
univariate general linear model (i.e., multiple regression). Because all anal-
yses are correlational, ANOVA and regression are part of one GLM, so do
not fall prey to the tendency to mutilate intervally-scaled predictors to
nominal scale merely so that ANOVA methods can then be used.

Mutilating Intervally-Scaled Independent Variables

One reason why researchers may be prone to categorizing continuous
variables (i.e., converting intervally scaled variables down to nominal
scale) is that some researchers unconsciously and erroneously associate
ANOVA with the power of experimental designs. Researchers often value
the ability of experiments to provide information about causality (Thomp-
son et al., 2005); they know that ANOVA can be useful when independent
variables are inherently nominally-scaled and dependent variables are
intervally-scaled; they then begin to unconsciously identify the analysis of
ANOVA with the design of an experiment.
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It is one thing to employ ANOVA when an experimental design is in
fact used. However, it is something quite different to assume that causal
inferences can be made just because an ANOVA is performed. This illogic,
in which design and analysis are confused with each other, are all the more
pernicious, because the confusion tends to arise unconsciously and thus is
not readily perceived by the researcher (Cohen, 1968).

Humphreys (1978) noted that:

The basic fact is that a measure of individual differences is not an indepen-
dent variable, and it does not become one by categorizing the scores and
treating the categories as if they defined a variable under experimental con-
trol in a factorially designed analysis of variance. (p. 873)

Similarly, Humphreys and Fleishman (1974) noted that categorizing vari-
ables in a nonexperimental design using an ANOVA analysis “not infre-
quently produces in both the investigator and his audience the illusion that
he has experimental control over the independent variable. Nothing could
be more wrong” (p. 468).

These sorts of confusion are especially disturbing when the researcher
has some independent or predictor variables that are intervally-scaled (e.g.,
pretest IQ scores), and converts them to nominal scale (e.g., low IQ, high
IQ), just to be able to perform some ANOVA analysis. As Cliff (1987) noted,
the practice of discarding variance on intervally-scaled predictor variables to
perform OVA analyses creates problems in almost all cases:

Such divisions are not infallible; think of the persons near the borders. Some
who should be highs are actually classified as lows, and vice versa. In addi-
tion, the “barely highs” are classified the same as the “very highs,” even
though they are different. (p. 130)

Moreover, not enough researchers realize that the practice of discard-
ing variance on an intervally-scaled predictor variable to perform OVA
analyses from a score reliability or measurement point of view “makes the
variable more unreliable, not less” (Cliff, 1987, p. 130), which in turn
lessens statistical power against Type II error. Pedhazur (1982) made the
same point, and explicitly presented the ultimate consequences of bad
practice in this vein:
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Categorization of attribute variables is all too frequently resorted to in the
social sciences. . . . It is possible that some of the conflicting evidence in the
research literature of a given area may be attributed to the practice of catego-
rization of continuous variables. . . . Categorization leads to a loss of infor-
mation, and consequently to a less sensitive analysis. (pp. 452–453)

It is the IQ dichotomy or trichotomy in the computer, and not the
intervally-scaled IQ data with a Cronbach’s α reliability of 0.93 sitting and
collecting dust on the shelf, that will be reflected in the ANOVA results.

Score variability is the “stuff” (i.e., information about the amount and
origins of individual differences) on which all analyses are based. Dis-
carding variance by categorizing variables amounts to “squandering of
information” (Cohen, 1968, p. 441). As Kerlinger (1986) explained,

partitioning a continuous variable into a dichotomy or trichotomy throws
information away. . . . To reduce a set of values with a relatively wide range
to a dichotomy is to reduce its variance and thus its possible correlation with
other variables. A good rule of research data analysis, therefore, is: Do not
reduce continuous variables to partitioned variables (dichotomies,
trichotomies, etc.) unless compelled to do so by circumstances or the nature
of the data (seriously skewed, bimodal, etc.). (p. 558)

The conversion of interval predictor variables into dichotomies or
trichotomies distorts (a) the distribution shape of the converted variables
in relation to the distribution we believe the variables have in the reality
we purportedly wish to study; (b) the variability of the converted variable
by discarding variance we believe exists in the reality we purportedly wish
to study; and (c) the relationships among predictors by making all predic-
tors perfectly uncorrelated when a balanced ANOVA is performed, thus
dishonoring a reality in which variables are usually correlated (Hester,
2000; Thompson, 1986, 1988a). This last feature of ANOVA, as Cohen
(1968) pointed out, vastly simplifies the calculation process, which was
important in the 1920s, but hardly seems a worthy sacrifice when a micro-
computer can perform calculations in seconds without requiring such
computational simplifications.

Of course, ANOVA does remain a useful tool when the independent
variables are all inherently nominal (e.g., dichotomies or trichotomies,
such as assignment to experimental condition or gender). However, in
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many areas of inquiry, relatively few independent variables are inherently
nominally-scaled, and so in many cases using ANOVA may raise ques-
tions about distorting data.

Three Possible Data Mutilation Scenarios

Three potential scenarios can be envisioned for data mutilation. First, an
independent variable (e.g., pretest standardized test scores, pretest IQ
scores) may be intervally-scaled with considerable variability, and perhaps
even a normal distribution. In this scenario, converting the scores into a
dichotomy or a trichotomy (a) discards score variability, which in turn (b)
reduces score reliability, (c) distorts score shape by converting a normal
distribution into a uniform/rectangular distribution, and (d) alters rela-
tionships with other variables in the analysis.

If our model of reality is that people are quite variable in IQ or aca-
demic achievement, and that these differences are noteworthy or meaning-
ful, why would we then use an analytic model that conceptualizes the
predictor as a dichotomy? Shouldn’t we match the analytic model to our
model of reality, so that we are studying the reality we presume exists,
rather than some nonreality?

If we take IQ scores, for example, and use a sample median split of
95.0 to create two IQ levels, our ANOVA analytic model says that two
people with IQ scores of 94 and 96 are different. Our ANOVA analytic
model says that two people with IQ scores of 65 and 94 are identical in
intelligence, as are two people with IQ scores of 96 and 175. Are any of
these suppositions reasonable?

Second, an intervally-scaled independent variable may be arrayed in
such a way that conversion to nominal scale represents no mutilation of
our predictive information. For example, if all our IQ scores were clus-
tered by happenstance as scores of 79, 80, 81; scores of 99, 100, 101; and
scores of 119, 120, and 121, then expressing the scores as a trichotomy
would be perfectly acceptable. We might reasonably decide that (a) the
people in the three score clusters are qualitatively different from each
other and (b) the people within each score cluster cannot reasonably be
differentiated as regards their IQs.

Third, converting an intervally-scaled “variable” into nominal scale
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may create variance in a scenario where there actually is no real score vari-
ability. For example, consider an actual dissertation on childhood depres-
sion in which the depression scores had a mean of 1.18 and a standard
deviation of 0.70, and a trichotomy was created using cutscores of 0.65
and 1.09. On this measure, the test manual recommended a clinical cutoff
for depression of 4!

Clearly, some score mutilations take the form of creating variance
where there really is not much variability. Attempting to study childhood
depression with a sample of children all of whom are well-adjusted and
happy creates insurmountable scientific challenges. The example rein-
forces the importance of obtaining large sums of squares on variables of
primary interest, and especially the outcome variable, which is always our
focus. The SOS is information about the amount and the origins of indi-
vidual differences. We simply cannot understand or explain or predict a
construct when we have little or no information about individual differ-
ences involving the construct.

Some Key Concepts

Multiple regression is the most general case of the univariate general
linear model (GLM), and subsumes other univariate parametric analy-
ses (i.e., two-sample t tests, ANOVA, ANCOVA, Pearson r) as special
cases. This implies that all analyses are correlational, yield r2-type
effect sizes, and apply weights to measured variables to estimate latent
variable scores.

These analytic relationships are important to understand for
heuristic purposes. We do not really understand a given analysis
unless we know what the analysis does and does not have in common
with alternative analyses.

And, from a practical applied research point of view, the use of
regression to conduct ANOVA via planned contrasts may have
important benefits of (a) potentially yielding more statistical power
against Type II error, and (b) forcing us to think. On the other hand,
when we are conducting research for which there is limited prior
research and theory, the exploratory use of omnibus tests and post
hoc tests, if necessary, is perfectly sensible.

But it is important not to confuse design with analysis. Only
experimental designs yield definitive conclusions about causality
(Thompson et al., 2005). ANOVA may be quite useful with experi-
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mental data, but invoking ANOVA does not itself yield the capacity
to make causal inferences.

The mutilation of intervally-scaled independent variables to con-
duct ANOVA may involve invoking an analytic model that does not
match our model of reality, and in such analyses we are illogically
exploring a reality that we do not believe exists. Usually, converting
intervally-scaled data to nominal scale (a) discards information about
the amounts and origins of individual differences, (b) lessens predictor
score reliability, (c) distorts predictor distribution shapes, (d) dishon-
ors relationships among predictors as they naturally occur, and (e)
lessens power against Type II error.

��� Reflection Problems ���

1. For our drinks, weight, and drinks × weight regression model using the

predictor variables in their unmutilated form, according to Table 9.15, the

R2 = 98.135%. If we square the r values in Table 9.14, the respective

effects due to each predictor are –0.42722 = 18.26%, 0.85782 = 73.58%,

and –0.25092 = 6.30%. For the mutilated version of the data, in the fac-

torial ANOVA model reported in Table 11.2, we obtain respective η2 val-

ues of 13.1%, 59.8%, and 3.6%, which sum to 76.5%.

Why are the effects smaller for the predictors after they have been

mutilated? Which effects involve an analytic model that honors your

model of reality about how drinks and weight might best be measured?

2. Dummy coding is an alternative to using orthogonal nontrend contrasts.

Each dummy code tests whether the mean of a single level differs from

the grand mean. Analyze the Table 12.1 data with the following dummy

codes created in SPSS syntax:

compute d1 = 0 .

compute d2 = 0 .

compute d3 = 0 .

compute d4 = 0 .

compute d5 = 0 .

if (level eq 2) d1 = 1 .

if (level eq 3) d2 = 1 .
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if (level eq 4) d3 = 1 .

if (level eq 5) d4 = 1 .

if (level eq 6) d1 = 1 .

Are the dummy-coded contrast variables orthogonal? How does the

summary table from this analysis compare to the Table 12.2 and 12.5

summary tables?
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13

Some Logistic
Models

Model Fitting
in a Logistic Context

A
s noted in Chapter 9, effect sizes can quantify the degree of fit of
models to data. For example, in ANOVA, we may fit a factorial
model, which by definition includes all possible main and inter-
action effects, or we may fit a nonfactorial model by excluding

one or more effects (e.g., the gender main effect in a treatment-by-gender
two-way study). In regression, we may or may not model interaction
effects, or we may or may not model nonlinear relationships by using pre-
dictor variables taken to various exponential powers. Or, in path analysis,
we may create models involving different path dynamics.

The analyses considered in previous chapters (excluding Spearman’s
ρ, φ, and rpb) had in common the premises that (a) the single outcome vari-
able is at least intervally-scaled, (b) the distribution shapes of either mea-
sured or latent variables are normal, and (c) the analytic weights should
maximize SOSEXPLAINED and minimize SOSUNEXPLAINED (i.e., maximize r2, R2,
or η2). These analyses require certain statistical assumptions to be reason-
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ably well met. For example, as noted in Chapter 8, multiple regression
analyses require, among other assumptions, that ei scores are normally dis-
tributed, and across various values of the predictor variables have equal
variances (i.e., homoscedasticity). Analyses that require at least interval
scale for the dependent variable and distributional assumptions are called
parametric analyses.

Nonparametric analyses make no distributional assumptions and may
be employed with outcome variables that are less than intervally-scaled.
Of course, we can also apply nonparametric methods to intervally-scaled
data either for substantive reasons, or because there are problems meeting
distributional assumptions. Here we will consider logistic regression (Cox,
1970) and loglinear analyses. A brief discussion of these two potent
nonparametric analyses will broaden your understanding of statistical
analyses as model testing procedures, as well as lay the heuristic ground-
work for mastering more complex statistics, such as multivariate analyses
(e.g., structural equation modeling, hierarchical linear modeling, growth
curve analyses). Readers seeking more in-depth, excellent treatments of
these two topics are referred to Rice (1994) and Pampel (2000), or to Rice
(1992), respectively.

��� Logistic Regression

Not infrequently, outcome variables are dichotomous. For example, peo-
ple may or may not die, marry, divorce, have children, receive welfare, be
unemployed, join a union, vote, be a felon, drop out, or enter college. We
will use the hypothetical data presented in Table 13.1 to make this discus-
sion concrete. The outcome variable, smoking, has been dummy-coded
1 = smoker, 0 = nonsmoker. The predictor variables are highest level of
education and gender (dummy-coded 0 = male, 1 = female).

The heuristic data are crudely modeled on the reality that roughly
25% of American adults smoke, with males and less educated individuals
being disproportionately more likely to smoke. Table 13.2 presents
descriptive statistics for the Table 13.1 data.
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ID Education level Gender Smoking P 1 – P P / (1 – P) log of P / (1 – P)

Predictor profile {7,0}
1 7 0 1 0.478 0.522 0.917 –0.087
2 7 0 1 0.478 0.522 0.917 –0.087
3 7 0 1 0.478 0.522 0.917 –0.087
4 7 0 1 0.478 0.522 0.917 –0.087
5 7 0 1 0.478 0.522 0.917 –0.087
6 7 0 1 0.478 0.522 0.917 –0.087
7 7 0 1 0.478 0.522 0.917 –0.087
8 7 0 1 0.478 0.522 0.917 –0.087
9 7 0 1 0.478 0.522 0.917 –0.087

10 7 0 1 0.478 0.522 0.917 –0.087
11 7 0 1 0.478 0.522 0.917 –0.087
12 7 0 0 0.522 0.478 1.091 0.087
13 7 0 0 0.522 0.478 1.091 0.087
14 7 0 0 0.522 0.478 1.091 0.087
15 7 0 0 0.522 0.478 1.091 0.087
16 7 0 0 0.522 0.478 1.091 0.087
17 7 0 0 0.522 0.478 1.091 0.087
18 7 0 0 0.522 0.478 1.091 0.087
19 7 0 0 0.522 0.478 1.091 0.087
20 7 0 0 0.522 0.478 1.091 0.087
21 7 0 0 0.522 0.478 1.091 0.087
22 7 0 0 0.522 0.478 1.091 0.087
23 7 0 0 0.522 0.478 1.091 0.087
Predictor profile {10,0}
24 10 0 1 0.467 0.533 0.875 –0.134
25 10 0 1 0.467 0.533 0.875 –0.134
26 10 0 1 0.467 0.533 0.875 –0.134
27 10 0 1 0.467 0.533 0.875 –0.134
28 10 0 1 0.467 0.533 0.875 –0.134
29 10 0 1 0.467 0.533 0.875 –0.134
30 10 0 1 0.467 0.533 0.875 –0.134
31 10 0 0 0.533 0.467 1.143 0.134
32 10 0 0 0.533 0.467 1.143 0.134
33 10 0 0 0.533 0.467 1.143 0.134
34 10 0 0 0.533 0.467 1.143 0.134
35 10 0 0 0.533 0.467 1.143 0.134
36 10 0 0 0.533 0.467 1.143 0.134
37 10 0 0 0.533 0.467 1.143 0.134
38 10 0 0 0.533 0.467 1.143 0.134
Predictor profile {10,1}
39 10 1 1 0.267 0.733 0.364 –1.012
40 10 1 1 0.267 0.733 0.364 –1.012
41 10 1 1 0.267 0.733 0.364 –1.012
42 10 1 1 0.267 0.733 0.364 –1.012
43 10 1 0 0.733 0.267 2.750 1.012

cont.

TABLE 13.1. Prediction of Smoking (n = 150) Logits
Computed Separately Within Predictor Score Profiles
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ID Education level Gender Smoking P 1 – P P / (1 – P) log of P / (1 – P)

44 10 1 0 0.733 0.267 2.750 1.012
45 10 1 0 0.733 0.267 2.750 1.012
46 10 1 0 0.733 0.267 2.750 1.012
47 10 1 0 0.733 0.267 2.750 1.012
48 10 1 0 0.733 0.267 2.750 1.012
49 10 1 0 0.733 0.267 2.750 1.012
50 10 1 0 0.733 0.267 2.750 1.012
51 10 1 0 0.733 0.267 2.750 1.012
52 10 1 0 0.733 0.267 2.750 1.012
53 10 1 0 0.733 0.267 2.750 1.012
Predictor profile {12,0}
54 12 0 1 0.400 0.600 0.667 –0.405
55 12 0 1 0.400 0.600 0.667 –0.405
56 12 0 1 0.400 0.600 0.667 –0.405
57 12 0 1 0.400 0.600 0.667 –0.405
58 12 0 1 0.400 0.600 0.667 –0.405
59 12 0 1 0.400 0.600 0.667 –0.405
60 12 0 0 0.600 0.400 1.500 0.405
61 12 0 0 0.600 0.400 1.500 0.405
62 12 0 0 0.600 0.400 1.500 0.405
63 12 0 0 0.600 0.400 1.500 0.405
64 12 0 0 0.600 0.400 1.500 0.405
65 12 0 0 0.600 0.400 1.500 0.405
66 12 0 0 0.600 0.400 1.500 0.405
67 12 0 0 0.600 0.400 1.500 0.405
68 12 0 0 0.600 0.400 1.500 0.405
Predictor profile {12,1}
69 12 1 1 0.267 0.733 0.364 –1.012
70 12 1 1 0.267 0.733 0.364 –1.012
71 12 1 1 0.267 0.733 0.364 –1.012
72 12 1 1 0.267 0.733 0.364 –1.012
73 12 1 0 0.733 0.267 2.750 1.012
74 12 1 0 0.733 0.267 2.750 1.012
75 12 1 0 0.733 0.267 2.750 1.012
76 12 1 0 0.733 0.267 2.750 1.012
77 12 1 0 0.733 0.267 2.750 1.012
78 12 1 0 0.733 0.267 2.750 1.012
79 12 1 0 0.733 0.267 2.750 1.012
80 12 1 0 0.733 0.267 2.750 1.012
81 12 1 0 0.733 0.267 2.750 1.012
82 12 1 0 0.733 0.267 2.750 1.012
83 12 1 0 0.733 0.267 2.750 1.012
Predictor profile {16,0}
84 16 0 1 0.267 0.733 0.364 –1.012
85 16 0 1 0.267 0.733 0.364 –1.012
86 16 0 1 0.267 0.733 0.364 –1.012
87 16 0 1 0.267 0.733 0.364 –1.012

TABLE 13.1. (cont.)

cont.
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ID Education level Gender Smoking P 1 – P P / (1 – P) log of P / (1 – P)

88 16 0 0 0.733 0.267 2.750 1.012
89 16 0 0 0.733 0.267 2.750 1.012
90 16 0 0 0.733 0.267 2.750 1.012
91 16 0 0 0.733 0.267 2.750 1.012
92 16 0 0 0.733 0.267 2.750 1.012
93 16 0 0 0.733 0.267 2.750 1.012
94 16 0 0 0.733 0.267 2.750 1.012
95 16 0 0 0.733 0.267 2.750 1.012
96 16 0 0 0.733 0.267 2.750 1.012
97 16 0 0 0.733 0.267 2.750 1.012
98 16 0 0 0.733 0.267 2.750 1.012
Predictor profile {16,1}
99 16 1 1 0.133 0.867 0.154 –1.872
100 16 1 1 0.133 0.867 0.154 –1.872
101 16 1 0 0.867 0.133 6.500 1.872
102 16 1 0 0.867 0.133 6.500 1.872
103 16 1 0 0.867 0.133 6.500 1.872
104 16 1 0 0.867 0.133 6.500 1.872
105 16 1 0 0.867 0.133 6.500 1.872
106 16 1 0 0.867 0.133 6.500 1.872
107 16 1 0 0.867 0.133 6.500 1.872
108 16 1 0 0.867 0.133 6.500 1.872
109 16 1 0 0.867 0.133 6.500 1.872
110 16 1 0 0.867 0.133 6.500 1.872
111 16 1 0 0.867 0.133 6.500 1.872
112 16 1 0 0.867 0.133 6.500 1.872
113 16 1 0 0.867 0.133 6.500 1.872
Predictor profile {20,0}
114 20 0 1 0.267 0.733 0.364 –1.012
115 20 0 1 0.267 0.733 0.364 –1.012
116 20 0 1 0.267 0.733 0.364 –1.012
117 20 0 1 0.267 0.733 0.364 –1.012
118 20 0 0 0.733 0.267 2.750 1.012
119 20 0 0 0.733 0.267 2.750 1.012
120 20 0 0 0.733 0.267 2.750 1.012
121 20 0 0 0.733 0.267 2.750 1.012
122 20 0 0 0.733 0.267 2.750 1.012
123 20 0 0 0.733 0.267 2.750 1.012
124 20 0 0 0.733 0.267 2.750 1.012
125 20 0 0 0.733 0.267 2.750 1.012
126 20 0 0 0.733 0.267 2.750 1.012
127 20 0 0 0.733 0.267 2.750 1.012
128 20 0 0 0.733 0.267 2.750 1.012
Predictor profile {20,1}
129 20 1 1 0.067 0.933 0.071 –2.639
130 20 1 0 0.933 0.067 4.000 2.639
131 20 1 0 0.933 0.067 4.000 2.639

TABLE 13.1. (cont.)

cont.



Multiple Regression Solution

Given the Table 13.2 results, we can solve for βEDUCATION with Equation
8.12. For our data we have

β1 = [rY × X1 – {(rY × X2)(rX1 × X2)}] / [1 – rX1 × X2
2] (8.12)

[–0.183 – {(–0.208)(0.316)}] / [1.000 – 0.3162]
[–0.183 – {(–0.208)(0.316)}] / [1.000 – 0.100]

[–0.183 – {(–0.208)(0.316)}] / 0.900
[–0.183 – {–0.066}] / 0.900

–0.117 / 0.900
βEDUCATION = –0.130
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ID Education level Gender Smoking P 1 – P P / (1 – P) log of P / (1 – P)

132 20 1 0 0.933 0.067 4.000 2.639
133 20 1 0 0.933 0.067 4.000 2.639
134 20 1 0 0.933 0.067 4.000 2.639
135 20 1 0 0.933 0.067 4.000 2.639
136 20 1 0 0.933 0.067 4.000 2.639
137 20 1 0 0.933 0.067 4.000 2.639
138 20 1 0 0.933 0.067 4.000 2.639
139 20 1 0 0.933 0.067 4.000 2.639
140 20 1 0 0.933 0.067 4.000 2.639
141 20 1 0 0.933 0.067 4.000 2.639
142 20 1 0 0.933 0.067 4.000 2.639
143 20 1 0 0.933 0.067 4.000 2.639
Predictor profile {24,1}
144 24 1 1 0.200 0.800 0.250 –1.386
145 24 1 0 0.800 0.200 4.000 1.386
146 24 1 0 0.800 0.200 4.000 1.386
147 24 1 0 0.800 0.200 4.000 1.386
148 24 1 0 0.800 0.200 4.000 1.386
Predictor profile {33,1}
149 33 1 1 0.500 0.500 1.000 0.000
150 33 1 0 0.500 0.500 1.000 0.000

TABLE 13.1. (cont.)



For βGENDER we have

β2 = [rY × X2 – {(rY × X1)(rX1 × X2)}] / [1 – rX1 × X2
2] (8.13)

β2 = [–0.208 – {(–0.183)(0.316)}] / [1.000 – 0.3162]
[–0.208 – {(–0.183)(0.316)}] / [1.000 – 0.100]

[–0.208 – {(–0.183)(0.316)}] / 0.900
[–0.208 – {–0.058}] / 0.900

–0.150 / 0.900
βGENDER = –0.167

For the measured variables in their unstandardized form, we can solve
for the b weights by using

b = β(SDY / SDX) (8.1)

For education we have

–0.130(0.460 / 5.280)
–0.130(0.087)

bEDUCATION = –0.011

For gender we have

–0.167(0.460 / 0.500)
–0.167(0.920)

bGENDER = –0.153
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TABLE 13.2. Descriptive Statistics for the Heuristic Table 13.1 Data

r of variable Coefficient

SPSS variable SMOKE ED_LEV GENDER M SD Skewness Kurtosis

SMOKE 1.000 0.30a 0.46 0.88 –1.24
ED_LEV –0.183 1.000 13.91 5.28 0.76 0.72
GENDER –0.208 0.316 1.000 0.45b 0.50 0.22 –1.98

aProportion of sample who smoke.
bProportion of sample who are female.



The additive constant may be computed using a generalization of

a = MY – b(MX) (8.4)

For our data we have

a = MY – bEDUCATION(MEDUCATION) – bGENDER(MGENDER)
0.300 – –0.011(13.910) – –0.153(0.450)

0.300 – –0.158 – –0.069
a = 0.527

Finally, we may solve for the R2
SMOKING with EDUCATION,GENDER with Equa-

tion 8.9. For our data we have

βEDUCATION(rSMOKING × EDUCATION) + βGENDER(rSMOKING × GENDER)
–0.130(–0.183) + –0.167(–0.208)

0.024 + 0.035
R2

SMOKING with EDUCATION,GENDER = 0.059

At this point, we may also compute the latent variable scores. We will
do so only for �Y i scores of the two hypothetical women who took multiple
postgraduate degrees, including both J.D.s and English Ph.D.s that set
records for duration of study. Working with somewhat more precision for
these two cases, we have

0.5265 + –0.0114(33) + –0.1536(1)
0.5265 + –0.3762 + –0.1536

�Y149 = �Y150 = –0.0033

Note that these two �Y i scores fall outside the plausible range of the
dichotomous outcome variable. People cannot be less of a smoker than
being a nonsmoker! This mathematical conundrum is only one troubling
aspect of using conventional multiple regression for this analytic prob-
lem.
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Odds and Odds Ratios

Another difficulty is conceptual. In this context our analytic goal is not to
approximate continuous Yi scores using �Y i scores subject to a constraint
that the SOS of the �Y i scores will be maximized, whereas, conversely, the
SOS of the ei scores will be minimized, and thus R2 (i.e., SOSEXPLAINED /
SOSY) will be maximized.

Instead, what we really want to do here is to develop an equation for
unstandardized predictor variables that classifies people into our groups
(i.e., either smoker or nonsmoker) with the greatest accuracy. As Menard
(2002) explained, “The distinction between the arbitrary numerical value
of Y . . . and the probability that Y has one or the other of its two possible
values is problematic for . . . [classical] regression and leads us to consider
alternative methods for estimating parameters to describe the relationship
between Y” (p. 10) and the predictors. If our equation works well with
our current sample, perhaps we will use the equation with similar new
samples to decide for whom antismoking interventions should be targeted.

So, our real focus is on some function of the proportional incidence,
Pj, of a targeted outcome. In the present example, Pj is the proportional
incidence of smoking within a given, jth predictor variable profile (e.g.,
{7,0}, {10,0}, {10,1}, {33,1}). In any situation in which the targeted out-
come (e.g., death, smoking) is coded 1 and the absence of the targeted out-
come is coded 0, Pj is the portion of people in the score profile exhibiting
the targeted outcome (e.g., for 1 smoker out of 10,000 people in a given
predictor score profile group, Pj = 1 / 10000 = 0.0001). Thus, Pj values
range between 0 and 1 and, for a dataset other than our example, might
include values such as

Pj

0.0001
0.001
0.01
0.1
0.2
0.4
0.5
0.6
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0.8
0.9
0.99
0.999
0.9999

However, what we really want to predict is the odds that the people
with a given predictor score profile (e.g., 7th-grade males, 10th-grade
females) exhibit the targeted outcome (e.g., smoking or its absence, or vice
versa). So, the real focus of the analysis is the odds (Oj), defined for a
given jth predictor score profile as Pj / (1 – Pj). The odds corresponding to
our illustrative Pj values would be

Pj 1 – Pj Pj / (1 – Pj)

0.0001 0.9999 0.0001
0.001 0.999 0.0010
0.01 0.99 0.0101
0.1 0.9 0.1111
0.2 0.8 0.2500
0.4 0.6 0.6667
0.5 0.5 1.0000
0.6 0.4 1.5000
0.8 0.2 4.0000
0.9 0.1 9.0000
0.99 0.01 99.0000
0.999 0.001 999.0000
0.9999 0.0001 9999.0000

When the incidence of the targeted outcome is a 50% / 50% proposi-
tion in a given profile group, the odds equal 1.0. The odds are less than
1.0 when the proportion of the targeted outcome is less than a 50% / 50%
proposition, and greater than 1.0 when the proportion of the targeted out-
come is more than a 50% / 50% proposition.

The use of odds implies interest in a comparison using an odds ratio
(i.e., the odds for one group or score profile versus the odds for another
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group or score profile). Here we are interested in the odds ratio for
females versus males, or the odds ratio for less-educated versus more-edu-
cated people. And in our Table 5.8 aspirin and heart attack example, the P
of a heart attack for physicians taking aspirin daily was 0.010 (i.e., 5 / 500;
O = 0.010 / 0.990 = 0.0101), while the P of a heart attack for the physi-
cians not taking a daily aspirin was 0.018 (O = 0.018 / 0.982 = 0.0183).
Although the odds of myocardial infarct were small in both treatment con-
ditions, the odds ratio (0.0101 / 0.0183 = 0.552) was sufficiently different
from 1.0 that in the parallel real study the investigation was halted before
the planned completion date, and today adult patients are routinely
encouraged to take aspirin daily to minimize the risk of heart attack.

Log Odds as Outcomes

Unfortunately, there is an additional difficulty. Notice that at the larger
values of Pj, the odds become huge! For example, as we move from Pj =
0.8 to Pj = 0.9, the corresponding odds move from Oj = 4.0 to Oj = 9.0.
And at Pj values of 0.99, 0.999, and 0.9999, we obtain odds of 99.0,
999.0, and 9999.0, respectively.

Figure 13.1 makes clear the exact nature of the problem. The figure
presents odds for our values of Pj ranging from 0.001 to 0.999. The sta-
tistical difficulty of using the odds as the dependent variable in a classi-
cal regression analysis is that odds are not linear. This would be less of
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FIGURE 13.1. Plot of odds and corresponding logits



a difficulty if our data included Pj values that were less extreme, such
that our odds did not reach hugely inflated values. However, we will use
a transformation of the dichotomous outcome variable that will make
logistic regression reasonable whether or not our data include extraordi-
nary odds.

Classical regression requires the form of the relationship between the
predictors and the outcome variable to be linear. When the relationship is
not linear, sometimes we can transform the independent variables to
model curvilinear relationship, by adding predictor variables that take pre-
dictors to various exponential powers, as illustrated in Chapter 9. In a
similar vein, here we will invoke a mathematical transformation of the
outcome variable (i.e., Oj) so that we can model nonlinear data dynamics
within a linear model.

In conventional mathematics, we perform operations that count using
an additive function in the base unit of 1.0. An alternative is counting
instead with a multiplicative function using the base unit of 10, or 2.718,
or any other number we wish to use as a base. Logarithms measure the
power to which the base must be raised to obtain a given value on X.

Our visit to logarithm land will be relatively brief. However, the
reader is advised that the first experience of logarithms may be facili-
tated by the presence of a dry gin martini, up, with a twist (No
olives!!!).

Common logarithms, by definition, use a base of 10. So consider these
data for X that increase in multiples of 10: {10, 100, 1,000, 10,000}. For
these data, we now have

X Base Exponent BaseEXPONENT

10 10 1 101

100 10 2 102

1,000 10 3 103

10,000 10 4 104

This means that, if we wish, we may reexpress our X scores in common
log units as the value of the exponents:
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X log X

10 1
100 2

1,000 3
10,000 4

One feature of this reexpression is that the focus is shifted from abso-
lute change to relative change. For example, if the X scores were dollars,
the increases in worth are $90, $900, and $9,000, respectively. However,
each increase reflects relative worth that grows by 10 times, or by
1,000%. A model that focuses on relative increments of income might be
of interest, for example, if we felt that absolute increases in income in dol-
lars are insensitive to those people who value fixed absolute increases less
and less as they become more wealthy.

We measure the yield of hydrogen bombs in absolute or additive
terms, in megatons. A 1-megaton bomb releases the energy equivalent to 1
million tons of TNT. A 2-megaton bomb releases an additional equivalent
of another 1 million tons of TNT.

But we measure earthquakes using a common logarithmic (i.e., base
10) scale. On the Richter scale, an increase of 1 magnitude unit represents
a multiplicative factor of a relative increase of 10 times in the seismic wave
amplitude. The seismic waves of a magnitude-7 earthquake are 10 times
greater in amplitude than those of a magnitude-6 earthquake, 100 times
larger than a magnitude-5 earthquake, and 1,000 times as large as a
4-magnitude earthquake.

Logarithms are mathematically defined (i.e., can be computed) only
for values of X above zero. Oj is always greater than zero, because profile
groups with no incidence of the target outcome have no information avail-
able to help us understand the likelihood of the outcome, and thus are
excluded. Logs are negative for values of X between 0 and 1. The log is 0
when X = 1, because any number raised to the power of 0 equals 1.
Finally, the log is a positive number for any X greater than 1.

Natural logs, unlike common logs, count instead in multiples of a base
that roughly equals 2.718. Logistic regression uses natural logs of the odds
as the focus of the analysis. Consider the following five scores on X
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expressed in natural logs. These five scores reflect a constant relative,
multiplicative increase of 171.83%:

Relative Natural
X % change Base Exponent Baseexp log X

1.00000 — 2.718282 0 1.0000 0.0000
2.71828 171.828 2.718282 1 2.7183 1.0000
7.38906 171.828 2.718282 2 7.3891 2.0000

20.08554 171.828 2.718282 3 20.0855 3.0000
54.59816 171.828 2.718282 4 54.5982 4.0000

148.41320 171.828 2.718282 5 148.4132 5.0000

Natural log values can be easily computed in Excel using the LN sta-
tistical function. For example, if you type in

+LN(2.718282)

the program will return the value of 1.000. Conversely, if you type in

+EXP(1)

the program will return the value of 2.718282.
The natural logs of values of odds are called logits. For selected values

of Pj and Oj, the logits (i.e., the rightmost column) are

Log
Pj 1 – Pj Pj / (1 – Pj) Pj / (1 – Pj)

0.0001 0.9999 0.0001 –9.210
0.001 0.999 0.0010 –6.907
0.01 0.99 0.0101 –4.595
0.1 0.9 0.1111 –2.197
0.2 0.8 0.2500 –1.386
0.4 0.6 0.6667 –0.405
0.5 0.5 1.0000 0.000
0.6 0.4 1.5000 0.405
0.8 0.2 4.0000 1.386
0.9 0.1 9.0000 2.197
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0.99 0.01 99.0000 4.595
0.999 0.001 999.0000 6.907
0.9999 0.0001 9999.0000 9.210

Table 13.1 presents the odds and logits for the smoking data, com-
puted to help build a conceptual bridge between analyzing the dichoto-
mous dummy-coded binary outcome data, using conventional regression,
and doing the actual computations in logistic regression in a different
manner. And Figure 13.1 illustrates that the logits form a linear pattern,
even when odds have an extremely curvilinear pattern.

We can then run a classical regression to predict the Table 13.1 logit
scores using education level and gender (dummy-coded as 0 = male and
1 = female) as independent variables. The R2 is now 22.7%, versus our
previous value of 5.9%, reflecting improved model fit when logits are the
analytic focus. Our a, b1, and b2 weights are 0.46, –0.05, and –0.73,
respectively, or –0.046, 0.05, and 0.73, depending on whether we want to
predict smoking or nonsmoking as the target outcome. In either case, the
uncorrected effect size is R2 because, as we have previously learned, multi-
plicative constants applied to Y (i.e., –1) do not affect squared correla-
tions. However, there is another complication.

Estimation Theory

All the statistical methods taught in this book to this point invoke a
statistical estimation theory called ordinary least squares (OLS). As we
have noted repeatedly, OLS estimation seeks weights that maximize
SOSEXPLAINED, minimize SOSERROR, and thus maximize uncorrected effect
sizes analogous to r2.

The OLS estimates turn on the critical premise that sample data are
representative of population scores, and therefore do not take sampling
error into account. This works reasonably well when sampling error is
minimal (e.g., sample size is quite large).

However, various other statistical estimation theories also can be
used! Just as cursive writing is not mentioned to primary school students
first learning to print, lest they form mass suicide pacts, some intellectual
withholding until now may have been justified to protect at least partially
the reader’s mental health.
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Maximum likelihood (ML) estimation theory differs from OLS meth-
ods by focusing directly on estimating population parameters such as b
weights (and not sample statistics). The OLS estimates will equal ML esti-
mates when OLS analyses fully meet analytic assumptions. And OLS
methods have the advantage that they are computationally hugely more
simple. This advantage was critical in the days before the advent of mod-
ern computers and software, when all analyses were repeatedly performed
by hand to confirm that computation errors had not been made.

However, various classical regression assumptions (e.g., homoscedas-
ticity) are difficult, if not impossible, to meet in the context of a dichoto-
mous outcome variable. Thus, logistic regression software uses maximum
likelihood estimation theory to obtain statistics.

Maximum likelihood estimation does not use formulas to compute
statistics. Instead, in a logistic regression model for given statistics esti-
mates the probability of each case being a 1 or a 0 on the outcome variable
is computed. If the persons in the dataset are independent of each other, as
when people are independently sampled and the scores of given cases do
not constrain other people’s scores, these probabilities can be multiplied
times each other across all the cases to compute a likelihood function sta-
tistic for the dataset. The parameter estimates achieve maximum likeli-
hood when this likelihood function for a given dataset is largest.

Conceptually, the computer guesses statistical estimates of the
weights, and keeps tweaking them until the likelihood function stops
changing much with repeated tweaking. Thus, logistic regression invokes
another form of the iteration process first described in Chapter 7. If you
ask, the computer software will divulge how many iterations were per-
formed and what the guesses were at each iteration.

Maximizing the likelihood function is equivalent to maximizing the
log of the likelihood function. For our data, the log likelihood function
stabilized after three iterations. The estimates at each iteration were

Log
Iteration likelihood a weight b Education b Gender

1 –87.369 0.10616 –0.04540 –0.61442
2 –87.025 0.27554 –0.06043 –0.76257
3 –87.023 0.29094 –0.06176 –0.77368
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The analyst need not fully understand the magic of this process. How-
ever, when conducting analyses that invoke iteration, it is important to
confirm that the iteration “converges” (i.e., stabilizes). There is no guaran-
tee that for a given dataset an iterative process will converge. So, to avoid
“infinite loops,” software has a default maximum number of iterations
that is allowed. If the solution does not converge, override the default iter-
ation limits by allowing more iterations. If you set this number ridicu-
lously high, and the solution still will not converge, the likely culprit is
insufficient sample size.

Result Interpretation

The first interpretation question, as usual, is “Do I have anything?” As in
classical regression, we can evaluate some combination of (a) NHSST
results, (b) effect sizes, and (c) result replicability.

First, we can look at the statistical significance of our results. We com-
pute the log-likelihood ratio for a model containing no predictor variables
as a baseline against which to compare results for alternative models.

The baseline is a model containing only a constant. In classical regres-
sion, a model with only the a weight, or when all the predictors are useless,
sets the a weight equal to MY, so that all the �Y i scores equal MY. The analo-
gous process in logistic regression uses only the knowledge of baseline group
membership (e.g., 30% smokers; 70% nonsmokers) to make predictions.

The log likelihood for our data, using only a prediction equation addi-
tive constant, equals [n1{ln(P1)} + n0{ln(1 – P1}]. The log likelihood can be
converted to a χ2 test statistic by multiplying the log likelihood by –2.

For our smoking data, there were 45 smokers (30%) and 105 non-
smokers (70%) out of 150 participants. So the test statistic is computed as

–2[n1{ln(P1)} + n0{ln(1 – P1}]
–2[45{ln(0.3)} + 105{ln(1 – 0.3)}]

–2[45{ln(0.3)} + 105{ln(0.7)}]
–2[45{–1.204} + 105{–0.357}]

–2[–54.179 + –37.451]
–2[–91.6296]
χ2 = 183.259
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In an analogous fashion, the χ2 is computed for the model using the two
predictors, and for our data is 174.046.

Smaller χ2 values reflect better model fit. We want small values for χ2

(and larger pCALCULATED values) for the models we prefer, so that we do not
reject the null that the model fits the data. However, in analyses that pre-
sume large sample sizes, these test statistics are primarily useful in quanti-
fying the differential fits of alternative models, and not in evaluating
overall model fit, for the reasons noted in Chapters 6 and 7 (i.e., large
samples tend to yield statistical significance even when effect sizes are
small).

Test statistic χ2 values and their degrees of freedom are both additive.
This means that we can use these χ2 values to compute the statistical sig-
nificance of model fit using a constant and two predictors versus using
only the constant. For our data, we have 183.259 – 174.046 = 9.213. The
estimation of each additional model parameter costs df = 1. So, the df
spent to obtain the 9.213 improvement (i.e., decrease) in the χ2 was 2. If
we enter into Excel

+CHIDIST(9.213,2)

the program will return the pCALCULATED value of 0.010. Thus, using our two
predictor variables results in a statistically significant improvement over
the baseline model that uses only an additive constant.

Second, we can look at various effect sizes for our results. In classical
regression, the R2 can be computed as the ratio of the SOSMODEL to the
SOSY. In logistic regression, there is the difficulty that “the model predicts
the logged odds, a transformation which represents a dependent variable
without bounds and with an arbitrarily defined variance” (Pampel, 2000,
p. 32) and thus a nonfixed and arbitrary SOS. However, a variety of
pseudo-R2 statistics has been suggested.

SPSS provides an estimate (RC&S
2) suggested by Cox and Snell (1989).

For our data this estimate is 6.0%. However, Nagelkerke (1991) noted
that RC&S

2 cannot mathematically attain a limit of 1.0 for most datasets,
and proposed computing the pseudo-R2

MAX and dividing RC&S
2 by this

R2
MAX to estimate the corrected value, RC&S

2*. SPSS also presents this cor-
rected value, and for our data RC&S

2* = 8.4%.
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Another alternative is the proportional improvement in χ2, computed as

RPROPORTIONAL
2 = (χNULL

2 – χMODEL
2) / χNULL

2 (13.1)

For our data we have

(183.259 – 174.046) / 183.259
9.213 / 183.259

RPROPORTIONAL
2 = 5.03%

Aldrich and Nelson (1984) proposed an alternative computed as

RA&S
2 = (χNULL

2 – χMODEL
2) / [(χNULL

2 – χMODEL
2 + n) (13.2)

For our data we have

(183.259 – 174.046) / (183.259 – 174.046 + 150)
9.213 / (9.213 + 150)

9.213 / 159.213
RA&S

2 = 5.79%

Hagle and Mitchell (1992) noted that RA&S
2 is attenuated, depending on

the distribution of the binary outcome scores, and they presented tables
for correcting RA&S

2 to obtain RA&S
2* by taking into account the percentage

of cases in the modal group. For our data, the modal group is nonsmokers,
with 70% of the cases in this group. The corresponding tabled correction
factor is 1.82. So, for our data we have

5.79%(1.82)
RA&S

2* = 10.53%

Finally, given Equation 8.16

RY with X1, X2, . . . , Xj = rY with Ŷ (8.16)
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and Equation 8.17,

RY with X1, X2, . . . , Xj
2 = rY with Ŷ

2 (8.17)

a parallel procedure must be reasonable in logistical regression. In logistic
regression, predicted membership in the outcome group dummy-coded as
1 (here smoking) can be computed as

P1 = exp(b0 + b1 × 1 + . . . + bp × p) / [1 + exp(b0 + b1 × 1 + . . . + bp × p)] (13.3)

This equation can be used in future samples to predict group membership,
invoking whatever baseline for the cutscore probability (e.g., 50%) the
researcher deems reasonable. But in the context of the present discussion,
Pampel (2000, p. 53) suggested saving the predicted probabilities in SPSS
using the SAVE subcommand within the LOGISTIC REGRESSION procedure,
and then using the CORRELATIONS procedure to correlate these probabili-
ties with the observed outcome variable scores. For our data, this Pearson
r equals 0.2552, so the estimated R2 = 0.25522 = 6.5%.

Caution must be exercised when evaluating the logistic regression
effect sizes. As Hosmer and Lemeshow (2000) noted, “Unfortunately low
R2 values in logistic regression are the norm and this presents a problem
when reporting their values to an audience accustomed to seeing [classical]
linear regression values” (p. 167).

Third, we can evaluate model invariance by replicating results with an
independent sample, or invoking cross-validation, or any of the previously
described external and internal replicability analytic strategies. These anal-
yses may be more feasible in logistic regression. In classical regression,
researchers often seek a minimum sample size greater than the number of
measured variables times 10 (or 15 or 20). However, in logistic regression,
researchers may require a sample size in the lower incidence outcome
group (here nSMOKERS < nNONSMOKERS, nSMOKERS = 45) that is at least 10 times
the number of predictor variables (Hosmer & Lemeshow, 2000). Thus,
researchers may have larger sample sizes when invoking logistic regression
analyses.

Several results may be consulted to answer the question “If I have
something, from where does my noteworthy effect originate?” First, the
equation weights may be examined. However, as output in conventional
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software, these are not standardized weights, and so cannot be compared
with each other apples-to-apples. One solution is to obtain semistandard-
ized weights by standardizing only the predictor variables before running
the logistic regression analysis (Pampel, 2000, pp. 32–33).

Second, structure coefficients may be computed in logistic regression.
In the context of estimating R2 by squaring the correlation of predicted
probabilities with the dichotomous outcome variable (e.g., for our data,
R2 = 0.25522 = 6.5%), we could analogously compute rS by correlating the
predictor variables with the predicted probabilities. For our data, these
structure coefficients are –0.7496 and –0.8517, respectively.

��� Loglinear Analysis

As noted in the previous discussion of logistic regression, sometimes out-
come variables are dichotomous. However, sometimes all the variables in
an analysis are categorical. Loglinear analyses are powerful methods for
modeling dynamics within categorical data. However, before presenting
loglinear analysis, an historical precursor for loglinear analysis will first be
presented. This presentation will allow the comparative advantages of
loglinear analyses to be emphasized.

Pearson Contingency Table 2

Halpin et al. (1982) presented real data in The Journal of the American
Medical Association on Reye’s syndrome. The syndrome is a rare but quite
serious illness that usually occurs following influenza or chicken pox. The
researchers were interested in exploring linkages between the syndrome
and taking aspirin to treat these illnesses. Janet Rice (1992), a collaborator
in the research, used a related example in her thoughtful exposition of
loglinear analyses. Table 13.3 presents a related hypothetical dataset mod-
eled on this research. Our example presumes that the data came from ret-
rospective searches of clinical records, rather than from a randomized
clinical trial.

The classical Pearson χ2 test evaluates whether the proportional dis-
tribution of cases within the contingency table is random (i.e., the cases

13. Some Logistic Models 413



414 FOUNDATIONS OF BEHAVIORAL STATISTICS

Variable

Case
Reye’s

Syndrome Aspirin Gender

1 1 1 0
2 1 1 0
3 1 1 0
4 1 1 0
5 1 1 0
6 1 1 0
7 1 1 0
8 1 1 0
9 1 1 0

10 1 1 0
11 1 1 0
12 1 1 0
13 1 1 0
14 1 1 0
15 1 1 0
16 1 1 0
17 1 1 0
18 1 1 0
19 1 1 0
20 1 1 0
21 1 1 0
22 1 1 0
23 1 1 0
24 1 1 0
25 1 1 1
26 1 1 1
27 1 1 1
28 1 1 1
29 1 1 1
30 1 1 1
31 1 1 1
32 1 1 1
33 1 1 1
34 1 1 1
35 1 1 1
36 1 1 1
37 1 1 1
38 1 1 1
39 1 1 1
40 1 1 1
41 1 1 1
42 1 1 1
43 1 1 1
44 1 1 1
45 1 1 1
46 1 1 1
47 1 1 1
48 1 1 1
49 1 0 0
50 1 0 1
51 0 1 0

TABLE 13.3. Hypothetical Reye’s Syndrome Data
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Variable

Case
Reye’s

Syndrome Aspirin Gender

52 0 1 0
53 0 1 0
54 0 1 0
55 0 1 0
56 0 1 0
57 0 1 0
58 0 1 0
59 0 1 0
60 0 1 0
61 0 1 0
62 0 1 0
63 0 1 0
64 0 1 0
65 0 1 0
66 0 1 0
67 0 1 0
68 0 1 0
69 0 1 0
70 0 1 0
71 0 1 0
72 0 1 0
73 0 1 0
74 0 1 0
75 0 1 1
76 0 1 1
77 0 1 1
78 0 1 1
79 0 1 1
80 0 1 1
81 0 1 1
82 0 1 1
83 0 1 1
84 0 1 1
85 0 1 1
86 0 1 1
87 0 0 0
88 0 0 0
89 0 0 0
90 0 0 0
91 0 0 0
92 0 0 0
93 0 0 0
94 0 0 0
95 0 0 0
96 0 0 1
97 0 0 1
98 0 0 1
99 0 0 1
100 0 0 1

TABLE 13.3. (cont.)



are distributed independently) against the alternative hypothesis that the
variables are associated. Table 13.4 presents a subset of the Table 13.3
data using only two variables that we will use to illustrate these compu-
tations.

For a rows-by-columns (r-by-c) contingency table, the test statistic can
be computed using observed and expected cell frequencies:

r c
χ2 = Σ Σ (Oij – Eij)2 / Eij (13.4)

i = 1 j = 1

The expected cell frequencies are computed by multiplying the cell margin
subtotals and then dividing this product by n. For example, for the Reye’s-
syndrome-no, aspirin-no cell, the expected cell frequency is (50 * 16) / 100
= 800 / 100 = 8.00.

For our data, the Pearson χ2 is

[{14 – ((50 * 16) / 100)}2 / ((50 * 16) / 100)] +
[{36 – ((50 * 84) / 100)}2 / ((50 * 84) / 100)] +
[{2 – ((50 * 16) / 100)}2 / ((50 * 16) / 100)] +
[{48 – ((50 * 84) / 100)}2 / ((50 * 84) / 100

[{14 – (800 / 100)}2 / (800 / 100)] +
[{36 – (4200 / 100)}2 / (4200 / 100)] +

[{2 – (800 / 100)}2 / (800 / 100)] +
[{48 – (4200 / 100)}2 / (4200 / 100)]

[{14 – 8.00}2 / 8.00] +
[{36 – 42.00}2 / 42.00] +

[{2 – 8.00}2 / 8.00] +
[{48 – 42.00}2 / 42.00]

[6.002 / 8.00] + [–6.002 / 42.00] + [–6.002 / 8.00] + [6.002 / 42.00]
[36.00 / 8.00] + [36.00 / 42.00] + [36.00 / 8.00] + [36.00 / 42.00]

4.500 + 0.857 + 4.500 + 0.857
χ2 = 10.714
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The Pearson contingency table χ2 test statistic has degrees of freedom
equal to (rows minus 1) times (columns minus 1), which for our data
equal (2 – 1)(2 – 1), or 1. The pCALCULATED for this test (i.e., χ2 = 10.714; df =
1) for our data is 0.00106. So we reject the null hypothesis that there is no
relationship between the two variables reflected in the Table 13.4 cell
counts or proportions.

Now, what does this widely used statistic tell us? This crude result
suggests that Reye’s syndrome, or aspirin, or the relationship of these two
variables, or some combination of these produces a nonzero association.
But the specific origins of the effect are not elucidated by the Pearson χ2

analysis as it is classically conducted. As Ramsey and Schafer (1997) noted
so succinctly, “Although the [Pearson contingency table] chi-squared test
is one of the most widely used of statistical tools, it is also one of the least
informative” (p. 548; emphasis added).

Logistic Alternative

In classical ANOVA, we could conduct a multiway study, pool together all
the explained sums of squares and their degrees of freedom, and then test
a single, superomnibus null hypothesis of no difference among all the vari-
ous main effect and cell means. For example, in a 4 × 3 factorial design,
we could crudely lump together SOSA plus SOSB plus SOSA × B and then test
this superordinate SOSEXPLAINED with degrees of freedom equal to cells – 1
(i.e., [4 × 3] – 1 = 11 = dfA = 3 + dfB = 2 + dfA × B = 6). However, testing of
such superomnibus ANOVA hypotheses in a multiway study makes no
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TABLE 13.4. Contingency Table Layout of the Table
13.3 Data for Reye’s Syndrome and Aspirin Variables

Aspirin

Reye’s Syndrome No Yes Total

No 14 36 50
Yes 2 48 50
Total 16 84 100



sense! We want to know where differences or relationships do or do not
occur.

In exactly the same vein, when analyzing multiway contingency table
data, we also want to test separately the effects of the variables acting sin-
gly and in various combinations with each other. Loglinear analysis has
the compelling appeal that for a given design all possible models can be
tested. Thus, loglinear models have the capacity to help researchers isolate
the origins of detected relationships.

Loglinear analyses invoke the likelihood ratio χ2 test statistic, L2. For
a two-dimensional r-by-c contingency table,

r c
L2 = Σ Σ 2[Oij][ln(Oij / Eij)] (13.5)

i = 1 j = 1

Equation 13.5 makes explicit that a logistic function is being invoked.
For the Table 13.4 data we have

2(14)[ln(14 / 8.00)] + 2(36)[ln(36 / 42.00)]
+ 2(2)[ln(2 / 8.00)] + 2(48)[ln(48 / 42.00)]

2(14)[ln(1.750)] + 2(36)[ln(0.857)]
+ 2(2)[ln(0.250)] + 2(48)[ln(1.142)]

2(14)[0.560] + 2(36)[–0.154] + 2(2)[–1.386] + 2(48)[0.133]
2(7.835) + 2(–5.549) + 2(–2.772) + 2(6.409)

15.669 + –11.098 + –5.545 + 12.818
L2 = 11.844

The L2 is distributed as a χ2 and again has (r – 1)(c – 1) degrees of free-
dom, or for our data, df = 1. The pCALCULATED for this test for our data is
0.00058. Note that this pCALCULATED does not equal the pCALCULATED from the
Pearson χ2 for the same data (i.e., 0.00106).

The L2 and the Pearson χ2 will approach each other for the same data
as the sample size is larger. Nevertheless, the L2 test statistic is preferred in
loglinear analyses. Unlike the Pearson χ2, the L2 test statistic has the criti-
cal feature that for two nested models in which one model contains a sub-
set of the terms in the other model, the model with the subset of terms will
always have a larger L2 test statistic than the other model. This critical fea-
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ture allows the quantification of differential fits of alternative models, and
statistical significance testing of differential fit, which is precisely what
loglinear analysis is all about.

In addition to the commonality that logistic regression and loglinear
analyses both invoke natural logarithms, some loglinear analyses, like
logistic regression, also require iteration and maximum likelihood estima-
tion of the expected values used in computing the likelihood function. For
more detailed comparisons of loglinear analysis and logistic regression, see
Rice (1994).

Figure 13.2 presents the SPSS syntax used to perform all possible
model tests for our data. Table 13.5 presents the test statistics for each of
the 19 models.

Interpretation Issues

When we are testing the fit of loglinear models to data, the null hypothesis
is that the data are compatible with a given model. So we are seeking mod-
els that are not statistically significant.

One complication is that more complex models have fewer degrees of
freedom, and so become less and less falsifiable. And models with different
degrees of freedom are difficult to compare apples-to-apples. One alterna-
tive is to compute L2 / df as another comparative interpretation aid.

Finally, when a subset of alternative models fits reasonably well,
among these we will tend to prefer simpler models. This is in keeping with
the admonitions of William of Occam, a sultan who, centuries ago, argued
that when two explanations fit a set of facts, the more parsimonious
explanation is more likely to be true. We prefer more parsimonious mod-
els, because true findings are most likely to replicate.

When a particular variable is of interest, we can also conduct further
computations using the Table 13.5 test statistics to better understand the
dynamics within our data. For example, presume that we are interested in
exploring correlates of Reye’s syndrome. We test given relationships by
computing χ2 difference test between models containing the effect of inter-
est and models containing all the terms except the effect of interest. Thus,
Table 13.6 tests the effect of the association for ill people between Reye’s
and taking aspirin.
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The effect due to the relationship of Reye’s and taking aspirin is statis-
tically significant (L2 / χ2 = 11.8442, df = 1, pCALCULATED = 0.00058). Of
course, a definitive causal conclusion cannot be reached on the basis of
these nonexperimental data, as emphasized in Chapter 1. Nevertheless, the
result is suggestive.
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FIGURE 13.2. SPSS syntax for all possible loglinear models
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TABLE 13.5. Model Fit Statistics for All 19 Possible Loglinear Models

Statistic

Model family/model pCALCULATED L2 df L2 / df

Baseline
Null, equiprobability model 1.E-12 67.7762 7 9.682

Single Margins
Reye’s 1.E-12 67.7762 6 11.296
Aspirin 0.009 17.0807 6 2.847
Gender 4.E-12 65.2052 6 10.868

Two Margins
Reye’s, Aspirin 0.004 17.0807 5 3.416
Reye’s, Gender 1.E-12 65.2052 5 13.041
Aspirin, Gender 0.013 14.5097 5 2.902

Three Margins
Reye’s, Aspirin, Gender 0.006 14.5097 4 3.627

Relationship Between Two Variables
Reye’s, Aspirin, Reye’s by Aspirin 0.264 5.2365 4 1.309
Reye’s, Gender, Reye’s by Gender 8.E-12 62.5650 4 15.641
Aspirin, Gender, Aspirin by Gender 0.006 14.3499 4 3.587

Relationship and One Omitted Margin
Gender, Reye’s, Aspirin, Reye’s By Aspirin 0.446 2.6655 3 0.888
Aspirin, Reye’s, Gender, Reye’s By Gender 0.008 11.8696 3 3.957
Reye’s, Aspirin, Gender, Aspirin By Gender 0.002 14.3499 3 4.783

Two Relationships Among Predictors
Reye’s, Aspirin, Gender, Reye’s By Aspirin, Reye’s By
Gender

0.987 0.0253 2 0.013

Reye’s, Aspirin, Gender, Reye’s By Aspirin, Aspirin By
Gender

0.286 2.5057 2 1.253

Reye’s, Aspirin, Gender, Reye’s By Gender, Aspirin By
Gender

0.003 11.7098 2 5.855

Three Sets of Relationships
Reye’s, Aspirin, Gender, Reye’s By Aspirin, Reye’s By
Gender, Aspirin By Gender

0.947 0.0044 1 0.004

Saturated (df = 0) Model
Reye’s, Aspirin, Gender, Reye’s By Aspirin, Reye’s By
Gender, Aspirin By Gender, Reye’s By Aspirin By
Gender

1.000 0.0000 0 —

Note. The saturated model, which uses all possible table margins and relationships, like any model with zero
degrees of freedom, always fits the data perfectly, and thus is not falsifiable.



We can also test the main and interaction effects on an outcome of
interest. Again, we test given effects by computing the χ2 difference test
between models containing the effect of interest and models containing all
the terms except the effect of interest. Thus, Table 13.7 tests (a) the main
effect of aspirin on Reye’s for participants with either influenza or chicken
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TABLE 13.6. Test of the Effect of the Reye’s By Aspirin Relationship Alone

Statistic

Model/effect χ2 (L2) df pCALCULATED

Reye’s, Aspirin, Gender, Aspirin By Gender 14.3499 3

Reye’s, Aspirin, Gender, REYE’S BY ASPIRIN, Aspirin
By Gender

2.5057 2

Due to Reye’s By Aspirin Relationship 11.8442 1 0.00058

Note. The effect of the Reye’s By Aspirin relationship is evaluated by computing the differences in the
χ2 / L2 values for the nested models, and then the pCALCULATED value for this L2 difference. The
pCALCULATED can be found using the Excel CHIDIST statistical function.

TABLE 13.7. Tests of the Effects of Aspirin and Gender,
Controlling for Each Other

Statistic

Model/effect χ2 (L2) df pCALCULATED

Reye’s, Aspirin, Gender, Reye’s By Gender, Aspirin By
Gender

11.7098 2

Reye’s, Aspirin, Gender, REYE’S BY ASPIRIN, Reye’s
By Gender, Aspirin By Gender

0.0044 1

Aspirin main effect controlling for Gender 11.7054 1 0.00062

Reye’s, Aspirin, Gender, Reye’s By Aspirin, Aspirin By
Gender

2.5057 2

Reye’s, Aspirin, Gender, Reye’s By Aspirin, REYE’S
BY GENDER, Aspirin By Gender

0.0044 1

Gender main effect controlling for Aspirin 2.5013 1 0.11375

Note. The main effects on Reye’s syndrome are evaluated by computing the differences in the χ2 / L2

values for the nested models and then the pCALCULATED values for these L2 differences. The pCALCULATED
values can be found using the Excel CHIDIST statistical function.



pox, controlling for gender, and (b) the main effect of gender on Reye’s for
participants with either influenza or chicken pox, controlling for aspirin.

The aspirin main effect is statistically significant (pCALCULATED =
0.00062), whereas the gender main effect is not (pCALCULATED = 0.11375).
Again, however, we recall that the aspirin regimen in the hypothetical data
was not randomly assigned in a clinical trial, so strong causal conclusions
may not be drawn. For example, perhaps the families more aggressively
treating illness-related fever with aspirin may have had different diets, or
differed in their genotypes.

We test the aspirin by gender two-way interaction effect on Reye’s
syndrome by computing the L2 / χ2 difference between the model contain-
ing all terms except the three-relationship term (L2 / χ2 = 0.0044, df = 1),
and the saturated model containing all the possible terms (L2 / χ2 = 0.0,
df = 0). This interaction effect (L2 / χ2 = 0.0044, df = 1) is not statistically
significant (pCALCULATED = 0.94711).

However, interaction effects must be interpreted cautiously in
loglinear analyses, just as in ANOVA. In a balanced 3 × 5 ANOVA with
10 people per cell (n = 3 × 5 × 10 = 150), for example, the A-way main
effect means are each based on an n of 50, the B-way main effect means
are each based on an n of 30, and the interaction effects involve 15 means
each with an n of 10. We estimate more parameters for higher-order inter-
actions, and we pay the price for doing so, by spending more degrees of
freedom. Lower ns for interaction estimates, and the associated greater
expenditure of degrees of freedom, reduce power against Type II error for
higher-order ANOVA interaction effects versus lower-order effects.
Exactly the same dynamics occur within the loglinear context.

Thus, from a variety of perspectives, these hypothetical data (modeled
on real data) tell the story that people sick with influenza or chicken pox
possibly should avoid taking aspirin. No medication, or an alternative
medication, may represent the more prudent course of treatment.

Some Key Concepts

Logarithms focus on relative, multiplicative score changes rather than
absolute, additive changes. Logarithmic transformation may be sensi-
ble for substantive reasons, as when we believe that increments to
income have meaning only in the context of previous baselines for
given people. Logarithmic transformations can also be useful for
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statistical reasons, when data dynamics involve nonlinear patterns.
Thus, these transformations are used in both logistic regression and
loglinear analyses. Logistic regression and loglinear analyses also
have in common the use of iteration and maximum likelihood estima-
tion.

Logistic regression is used with a dichotomous outcome and pre-
dictors that are some combination of interval or categorical.
Polytomous logistic regression methods useful with outcomes involv-
ing three or more categories have also been developed, but are beyond
the scope of the present treatment.

Predictive discriminant analysis (PDA) is an alternative to logistic
regression (Huberty, 1994). PDA is a multivariate method not cov-
ered in the present treatment. However, it will be noted that several
Monte Carlo simulation studies have compared the two methods
(e.g., Halperin, Blackwelder, & Verter, 1971; Hosmer, Hosmer, &
Fisher, 1983). In Monte Carlo studies, researchers create known pop-
ulations, and then examine the capacity of alternative analyses to
recover known parameters. Efron (1975) found that PDA is more sta-
tistically efficient iff the assumptions of PDA are met.

��� Reflection Problems ���

1. For the various effect sizes considered in Chapters 1–12 (e.g., Cohen’s d,

η2 , ω2 , r2, adjusted R2), what were the effect sizes if the sample statistics

exactly matched the expectations of the nil null hypothesis? The odds

ratio is also an effect size. However, for odds ratios, what will the odds

ratio be if the odds are exactly equal in two groups (e.g., odds of infarct

among people taking a daily aspirin versus among people not taking a

daily aspirin)?

2. Create a dataset by computing odds (Pj / (1 – Pj)) for Pj ranging from 0.2

to 0.8 inclusive, incrementing by values of 0.01. Compute the correspond-

ing log odds values for the odds. First, plot the odds and logit data pairs

in a scattergram. Second, compute the Pearson r between the two vari-

ables. What do these graphical and statistical analyses suggest about the

necessity to use the logarithmic transform when values of Pj are not

extreme?
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3. Compute the Pearson contingency table χ2 test for the variable pairs A

and B, and then C and D. Note that for both contingency tables, the

omnibus test χ2 = 9.0, df = 4, pCALCULATED = 0.06, and φ = 0.50. Then use

the SPSS LOGLINEAR command to test various models for both variable

pairs, and compare the model fit results. What do these comparisons sug-

gest about the appropriateness for multiway contingency tables of using

the omnibus χ2 test as the only analysis?
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SPSS variables

Case A B C D

1 1 1 1 1

2 1 1 1 1

3 1 1 1 1

4 1 1 1 1

5 1 1 1 1

6 1 1 1 2

7 1 1 1 2

8 1 2 1 3

9 1 2 1 3

10 1 2 1 3

11 1 2 1 3

12 1 3 1 3

13 2 1 2 1

14 2 1 2 1

15 2 1 2 2

16 2 1 2 2

17 2 2 2 2

18 2 2 2 2

19 2 2 2 2

20 2 2 2 2

21 2 3 2 2

22 2 3 2 2

23 2 3 2 3

24 2 3 2 3

25 3 1 3 1
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26 3 2 3 1

27 3 2 3 1

28 3 2 3 1

29 3 2 3 1

30 3 3 3 2

31 3 3 3 2

32 3 3 3 3

33 3 3 3 3

34 3 3 3 3

35 3 3 3 3

36 3 3 3 3



Appendix

Scores (n = 100)
with Near Normal

Distributions

Score form

Case/statistic ~z ~T ~IQ ~GRE

1 –2.5 25 62.5 250
2 –2.2 28 67.0 280
3 –2.0 30 70.0 300
4 –1.8 32 73.0 320
5 –1.7 33 74.5 330
6 –1.6 34 76.0 340
7 –1.5 35 77.5 350
8 –1.4 36 79.0 360
9 –1.4 36 79.0 360

10 –1.3 37 80.5 370
11 –1.3 37 80.5 370
12 –1.2 38 82.0 380
13 –1.2 38 82.0 380
14 –1.1 39 83.5 390
15 –1.1 39 83.5 390
16 –1.0 40 85.0 400
17 –1.0 40 85.0 400
18 –0.9 41 86.5 410
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19 –0.9 41 86.5 410
20 –0.9 41 86.5 410
21 –0.8 42 88.0 420
22 –0.8 42 88.0 420
23 –0.8 42 88.0 420
24 –0.7 43 89.5 430
25 –0.7 43 89.5 430
26 –0.7 43 89.5 430
27 –0.6 44 91.0 440
28 –0.6 44 91.0 440
29 –0.6 44 91.0 440
30 –0.5 45 92.5 450
31 –0.5 45 92.5 450
32 –0.5 45 92.5 450
33 –0.4 46 94.0 460
34 –0.4 46 94.0 460
35 –0.4 46 94.0 460
36 –0.4 46 94.0 460
37 –0.3 47 95.5 470
38 –0.3 47 95.5 470
39 –0.3 47 95.5 470
40 –0.3 47 95.5 470
41 –0.2 48 97.0 480
42 –0.2 48 97.0 480
43 –0.2 48 97.0 480
44 –0.2 48 97.0 480
45 –0.1 49 98.5 490
46 –0.1 49 98.5 490
47 –0.1 49 98.5 490
48 –0.1 49 98.5 490
49 0.0 50 100.0 500
50 0.0 50 100.0 500
51 0.0 50 100.0 500
52 0.0 50 100.0 500
53 0.1 51 101.5 510
54 0.1 51 101.5 510
55 0.1 51 101.5 510
56 0.1 51 101.5 510
57 0.2 52 103.0 520
58 0.2 52 103.0 520
59 0.2 52 103.0 520
60 0.2 52 103.0 520
61 0.3 53 104.5 530
62 0.3 53 104.5 530
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63 0.3 53 104.5 530
64 0.3 53 104.5 530
65 0.4 54 106.0 540
66 0.4 54 106.0 540
67 0.4 54 106.0 540
68 0.4 54 106.0 540
69 0.5 55 107.5 550
70 0.5 55 107.5 550
71 0.5 55 107.5 550
72 0.6 56 109.0 560
73 0.6 56 109.0 560
74 0.6 56 109.0 560
75 0.7 57 110.5 570
76 0.7 57 110.5 570
77 0.7 57 110.5 570
78 0.8 58 112.0 580
79 0.8 58 112.0 580
80 0.8 58 112.0 580
81 0.9 59 113.5 590
82 0.9 59 113.5 590
83 0.9 59 113.5 590
84 1.0 60 115.0 600
85 1.0 60 115.0 600
86 1.1 61 116.5 610
87 1.1 61 116.5 610
88 1.2 62 118.0 620
89 1.2 62 118.0 620
90 1.3 63 119.5 630
91 1.3 63 119.5 630
92 1.4 64 121.0 640
93 1.4 64 121.0 640
94 1.5 65 122.5 650
95 1.6 66 124.0 660
96 1.7 67 125.5 670
97 1.8 68 127.0 680
98 2.0 70 130.0 700
99 2.2 72 133.0 720

100 2.5 75 137.5 750

M 0.000 50.000 100.000 500.000
SD 1.005 10.048 15.073 100.483
Skewness 0.000 0.000 0.000 0.000
Kurtosis –0.170 –0.170 –0.170 –0.170
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factor, as synonym of way, 309
factorial models, 343–345
fixed effects, 346–353
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homogeneity of variance assumption,
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design, 335
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mixed effects, 345–353
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planned contrasts. See General linear
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326
random effects, 345–353
repeated measures ANOVA. See General

linear model, repeated measures
ANOVA
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SOSTOTAL, meaning of, 313
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treatment way, 340
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linear model, repeated measures
ANOVA

ATI design. See Design, ATI
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Bonferroni correction, 308
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sampling. See Statistical significance
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Effect size
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and the unit of analysis, 199
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“corrected” R2 or r2, 249
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d versus ∆, 191–192
Cohen’s d, 191
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group overlap, 188
interpretation of, 198–200, 251
number-needed-to-treat, 188
odds ratio as, 424
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probability of superiority, 188, 212–213

sampling error influences on, 193–198
small may be important, 126
standardized difference, uncorrected,

189–192
unstandardized difference, 189
variance-accounted-for, 192–193
variance-accounted-for, negative, 198
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Einstein, relativity theory of, 219
Errors, inferential

experimentwise, 304–309
relationships among, 148
testwise, 304
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Type I, preference for in publication,
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Type II, 145–146
Type IV, 341

Expected mean squares, 347
Experimental design. See Design,

experimental

“Fan” effect, intervention, 56
F test statistic, 157–158
Fixed effects. See ANOVA, fixed effects

General linear model (GLM), 98, 359–392
constructing planned contrasts, 368–372
orthogonal contrasts, 363–365
planned contrasts, 362–373
planned contrasts, advantages of,

367–368
planned contrasts, synonymous names

for, 363
planned contrasts, using Bonferroni

correction, 372–373
polynomial contrasts, 375–380
repeated measures ANOVA, 380–385
superiority of, 386–390
three aspects of, 360

Geometric mean, 36
Glass’ ∆. See Effect size, Glass’ ∆

Harmonic mean, 36
Hawthorne effect, 29
Histograms, 35–36
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History, design validity threat, 27
Homogeneity of regression assumption. See

Analysis of covariance, homogeneity
of regression assumption

Homogeneity of variance assumption. See
Analysis of variance, homogeneity of
variance assumption

Homoscedasticity, 232
Hypothesis

“accepting” the null, 148–150
alternative, 161
nil null, 143
null, 143–144
omnibus, 309
research, 143
testing equality of two dispersions,

157–160
testing equality of means of two groups,

two-tailed, 160–163
testing equality of means of two groups,

one-tailed, 163–165
testing equality of two means, unequal

variance assumed, 165–167
testing equality of two paired (dependent)

means, 167–169
testing independence of counts in a

contingency table, 413–417
testing whether two R2s are equal, 271

Imputation, 50, 95, 131
Instrumentation, design validity threat, 27
Interaction effects

ANOVA, 334
defined, 293
testing in regression, 293–298

International Committee of Medical Journal
Editors, 186

Invariance coefficients, 263, 265
Ipsative measurement, 21–24
Iteration, 45, 207, 408

Jackknife. See Replicability analysis,
internal, jackknife

John Henry effect, 29

Levels of scale. See Scale, levels of
Likert scales, 22–23

Location statistics, 33–51
centroid, 103
expectations, 33–34
grand mean, 313
graphics, 34–36
Huber estimator, 45
mean, 39–41
mean, trimmed, 48–49
mean, winsorized, 47–48
median, 37–39
median, as estimate of mean, 49
mode, 36–37
question addressed by, 33
shape effects on, 95

Logarithms, 404–407
common (base), 404
linearity of, 403–407
natural (base), 405

Loglinear analysis, 413–424
superiority over the Pearson χ2 test,

417–418
Logistic regression, 394–413

log odds, 403–407
odds and odds ratios, 401–403
predictive discriminant analysis (PDA) as

alternative, 424
result interpretation, 409–413

Main effect. See ANOVA, main effect
Maturation, design validity threat, 27
Maximum likelihood estimation theory,

408
Mean. See Location statistics, mean
Median. See Location statistics, median
Mediator effects, 11, 111–112
Meta-analytic thinking, 200, 253–254
Missing data, 50. See also Imputation
Mixed effects. See ANOVA, mixed effects
Mode. See Location statistics, mode
Model

“falsifiability,” 289
fit, 287–289
specification error, 231, 247

Moderator effects, 9, 113–114
Mortality, design validity threat, 27
Multicollinearity. See Collinearity
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Multiple regression. See Regression analysis
Mutilation of interval predictors, 360,

386–390

NHSST. See Statistical significance
Nonparametric analyses, 394
Normality. See Distributions, normal
Normative measurement, 20–21

Odds and odds ratios. See Logistic
regression, odds and odds ratios

Ordinary least squares (OLS) estimation
theory, 407

Outcome variable. See Variable, dependent
Outliers

defined, 43–46, 194
detection, 257–258

pCALCULATED. See Statistical significance
pCALCULATED, finding with Excel, 160
Parameter, 13
Parametric analyses, 98, 394
Parsimony, 419
Path analysis

as partitioning correlations, 285–289
path coefficient estimation, 284–285

Pearson contingency table χ2 test, 413–417
limits of, 417–418

Pearson r. See Relationship statistics,
Pearson r

Planned contrasts. See General linear
model, planned contrasts

Polynominal contrasts. See General linear
model, polynomial contrasts

Population, 12
Power, statistical. See Statistical significance,

power
Practical significance, 134, 185–213. See

also “Effect size”
Predictor variable. See Variable,

independent

Random effects. See ANOVA, random
effects

Range. See Dispersion statistics, range
Ranked scale. See Scale, ordinal

Rates of learning, 25
Reactive measurement, design validity

threat, 28–29
Regression analysis

a weight, meaning of, 295
all-possible-subsets analyses, 277
“adjusted” or “corrected” R2, 249
and collinearity, 244–245
“best case,” 224–225
Case #1, 232–234
Case #2, 234–237
Case #3, 237–240
curvilinear models, 290–292
defined, 216
entry, hierarchical, 276
error scores (ei), 222
error scores (ei), when constants, 224
form of the equation, 220
formula for weights across all cases, 235
logistic. See Logistic regression
interaction effects testing, 293–298
interpretation of, 243–244, 248–270
purposes of, 218–219
replicability evidence. See Replicability

analyses
R2, formulas for, 230, 233
standardized weights, 225–226, 235
standardized weights, not being

correlations, 239–240
statistical assumptions of, 231–232
structure coefficients, 240–244, 269–270
suppression, 237–238
testing larger R2 versus smaller R2, 271
uncorrelated predictors, 232–234
unstandardized weights, 221, 296
variable types, 222
weights, computation of, 225–227
weights, context specificity of, 241,

247–248, 268
weights, functions of, 222–225
weights, “insensitivity” of, 262
weights, standardized versus

unstandardized, 267
“worst case,” 223–224
�Y scores, 222
�Y scores, mean of, 224, 245
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Regression analysis (continued)
�Y scores, SOS ranges of, 224
�Y scores, when z scores, 246

Relationship statistics. See also Regression
analysis

and curvilinear relationships, 105–106
and distance from centroid, 118
and imputation, 131
and range restriction, 114–116
and “third variables,” 110–112
and scattergram quadrants, 117–118
and shape, 128–130
corrected for sampling error, 195–198
covariance, 99–100
direct, 103
expected sample values for, 211–212
multiple R2, 230
partial, 112
Pearson r, 99–107
Pearson r, as only measuring linear

relationship, 379
Pearson r, as standardized covariance, 99
Pearson r, equality with covariance, 101
Pearson r, features of, 101–110
Pearson r, shape effects on, 119, 131
Pearson r, the two questions asked by, 119
Pearson r, undefined, 101
perfect, 103
phi (φ), 124–126
point biserial (rpb), 126–128
positive. See Relationship statistics, direct
Spearman’s rho (ρ), 118–121
Spearman’s rho, the one question asked

by, 130
Spearman’s rho, versus Pearson r, 121

Reliability, score, 61, 356
Replicability analyses

external, 254
internal, 254
internal, bootstrap, 255–257
internal, cross-validation, 258–266
internal, jackknife, 257–258
purpose of, 254–266

Resampling. See Replicability analysis,
internal, bootstrap

Response variable. See Variable, dependent

Reye’s syndrome, 413–423
Robustness, 47
Rounding, 41–42

Sample, 12
Sample size. See Statistics, precision
Sampling distributions. See Statistical

significance
Sampling error variance. See Effect sizes,

sampling error influences on
Scale, levels of, 13–20

interval, 17–18
nominal, 14–16
ordinal, 16–17
transforming, 19–20

Scattergram (scatterplot), 101–103
Scheffé post hoc tests, 329
Scores

centered, 71
centered/nonstandardized, 294
centered/standardized, 294
noncentered/standardized, 294
standardized, 71
z scores, 71

Selection, design validity threat, 26
Shape statistics

coefficient of kurtosis, 81
coefficient of skewness, 77
symmetry versus skew, 76

Simpson’s paradox, 9–11
Smallpox, 218
Sphericity, 383
Solomon four group. See Design, Solomon

four group
SOSBETWEEN. See Sum of squares, explained
SOSERROR. See Sum of squares,

unexplained
SOSMODEL. See Sum of squares, explained
SOSREGRESSION. See Sum of squares,

explained
SOSRESIDUAL. See Sum of squares,

unexplained
SOSWITHIN. See Sum of squares,

unexplained
Standard deviation. See Dispersion statistics,

standard deviation
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Standard error bars, 201
Standard error, inferential versus descriptive

use of, 155
Standardized score world, 70–72
Statistic, 13
Statistical regression toward the mean, 28
Statistical significance. See also Errors,

inferential
and perfect effect size, 182
and “vote counting,” 190
in regression analysis, 249
one-tailed tests, 163–165
pCALCULATED, what it does not mean,

177–178
pCALCULATED, what it means, 179–181
pCRITICAL or α, 137
power against Type II error, 172–177
process defined, 136–140
regions of rejection, 139
sampling distribution, 135–142
sampling distribution, purpose of, 138
sampling distributions, properties of,

150–154
sampling distributions versus score

distributions, 140
standard error. See Statistics, standard

error (SE) of
two-tailed tests, 139, 161–163

Statistics
as characterizations, 1–3
bivariate, 31
central tendency. See Location statistics
criteria for evaluating, 46–47
descriptive, defined, 31
dispersion. See Dispersion statistics
expectations for, 32
inferential, defined, 134
location. See Location statistics
multivariate, 8
precision, 169–172
robust, 47–49
qualified by standard errors, 201
standard error (SE) of, 154–155
test, 156–157
test statistics, defined, 156
test statistics, noncentral, 208

univariate, 4, 7, 31
worlds of, 33, 62

Stem-and-leaf plots, 91–92
Stepwise analyses

defined, 270
sampling error in, 274
selecting predictors that are not best, 275
wrong degrees of freedom used in

packages, 272–273
Sufficiency, 46
Sum of squares. See also Dispersion

statistics, sum of squares
“explained,” in regression, 230
“unexplained,” in regression, 228–230

Symbols
for designs, 24
for parameters, 13
for statistics, 13
for variables 8–9

t test statistic, 155, 160
t statistics, versus F for two group means,

304
Test statistics. See Statistics, test
Test statistic critical (TSCRITICAL), finding in

Excel, 159
Testing, design validity threat, 27
Transistors, 219
Trend contrasts. See General linear model,

polynomial contrasts
Tukey post hoc tests, 329

Unbiasedness, 47
Univariate statistics. See Statistics,

univariate

Validity, design
external, 28–29
internal, 26–28
threats, 26–28
wisdom, 29–30

Variable
defined, 3
dependent, 5–6
dependent, focal role of, 217–218
incidental, 6–7
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Variable (continued)
independent, 5–6
latent (or synthetic or composite), 222
measured or observed, 222
mediator, 11, 111–112
moderator, 9, 113
suppressor, 237–238
two major classes of, 222

Variance. See Dispersion statistics, variance
Variance, as a covariance, 116

Variance, pooled, 161
Variance, sampling error. See Effect sizes,

sampling error influences on
Venn diagrams, 300

Wald statistic. See t test statistic
“What if” analysis

for power, 174–177
for sample effect size expected when

parameter effect is zero, 196, 211–212
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